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Abstract

When individuals learn facts (e.g., foreign language vocabulary) over multiple
study sessions, the temporal spacing of study has a significant impact on memory
retention. Behavioral experiments have shown a nonmonotonic relationship be-
tween spacing and retention: short or long intervals between study sessions yield
lower cued-recall accuracy than intermediate intervals. Appropriate spacing of
study can double retention on educationally relevant time scales. We introduce a
Multiscale Context Model (MCM) that is able to predict the influence of a partic-
ular study schedule on retention for specific material. MCM’s prediction is based
on empirical data characterizing forgetting of the material following a single study
session. MCM is a synthesis of two existing memory models (Staddon, Chelaru,
& Higa, 2002; Raaijmakers, 2003). On the surface, these models are unrelated
and incompatible, but we show they share a core feature that allows them to be
integrated. MCM can determine study schedules that maximize the durability of
learning, and has implications for education and training. MCM can be cast either
as a neural network with inputs that fluctuate over time, or as a cascade of leaky
integrators. MCM is intriguingly similar to a Bayesian multiscale model of mem-
ory (Kording, Tenenbaum, & Shadmehr, 2007), yet MCM is better able to account
for human declarative memory.

1 Introduction

Students often face the task of memorizing facts such as foreign language vocabulary or state cap-
itals. To retain such information for a long time, students are advised not to cram their study, but
rather to study over multiple, well-spaced sessions. This advice is based on a memory phenomenon
known as the distributed practice or spacing effect (Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006).

The spacing effect is typically studied via a controlled experimental paradigm in which participants
are asked to study unfamiliar paired associates (e.g., English-Japanese vocabulary) in two sessions.
The time between sessions, known as the intersession interval or ISI, is manipulated across partici-
pants. Some time after the second study session, a cued-recall test is administered to the participants,
e.g., “What is ‘rabbit’ in Japanese?” The lag between second session and the test is known as the
retention interval or RI.

Recall accuracy as a function of ISI follows a characteristic curve. The solid line of Figure 1a
sketches this curve, which we will refer to as the spacing function. The left edge of the graph cor-
responds to massed practice, when session two immediately follows session one. Recall accuracy
rises dramatically as the ISI increases, reaches a peak, and falls off gradually. The ISI corresponding
to the peak—the optimal ISI—depends strongly on RI: a meta-analysis by Cepeda et al. (2006) sug-
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Figure 1: (a) The spacing function (solid line) depicts recall at test following two study sessions
separated by a given ISI; the forgetting function (dashed line) depicts recall as a function of the lag
between study and test. (b) A sketch of the Multiscale Context Model.

gests a power-law relationship. The optimal ISI almost certainly depends on the specific materials
being studied and the manner of study as well. For educationally relevant RIs on the order of weeks
and months, the effect of spacing can be tremendous: optimal spacing can double retention over
massed practice (Cepeda et al., in press).

The spacing function is related to another observable measure of retention, the forgetting function,
which characterizes recall accuracy following a single study session as a function of the lag between
study and test. For example, suppose participants in the experiment described above learned material
in study session 1, and were then tested on the material immediately prior to study session 2. As the
ISI increased, session 1 memories would decay. This decay is shown in the dashed line of Figure 1a.
Typical forgetting functions follow a generalized power-law decay, of the form P (recall) = A(1 +
Bt)−C , where A, B, and C are constants, and t is the study-test lag (Wixted & Carpenter, 2007).

Our goal is to develop a model of long-term memory that characterizes the memory-trace strength
of items learned over two or more sessions. The model predicts recall accuracy as a function of the
RI, taking into account the study schedule—the ISI or set of ISIs determining the spacing of study
sessions. We would like to use this model to prescribe the optimal study schedule.

The spacing effect is among the best known phenomena in cognitive psychology, and many the-
oretical explanations have been suggested. Two well developed computational models of human
memory have been elaborated to explain the spacing effect (Pavlik & Anderson, 2005; Raaijmakers,
2003). These models are necessarily complex: the brain contains multiple, interacting memory sys-
tems whose decay and interference characteristics depend on the specific content being stored and
its relationship to other content. Consequently, these computational theories are fairly flexible and
can provide reasonable post-hoc fits to spacing effect data, but we question their predictive value.

Rather than developing a general theory of memory, we introduce a model that specifically predicts
the shape of the spacing function. Because the spacing function depends not only on the RI, but also
on the nature of the material being learned, and the manner and amount of study, the model requires
empirical constraints. We propose a novel approach to obtaining a predictive model: we collect
behavioral data to determine the forgetting function for the specific material being learned. We then
use the forgetting function, which is based on a single study session, to predict the spacing function,
which is based on two or more study sessions. Such a predictive model has significant implications
for education and training. The model can be used to search for the ISI or set of ISIs that maximizes
expected recall accuracy for a fixed RI. Although the required RI is not known in practical settings,
one can instead optimize over RI as a random variable with an assumed distribution.

2 Accounts of the spacing effect

We review two existing theories proposed to explain the spacing effect, and then propose a synthesis
of these theories. The two theories appear to be unrelated and mutually exclusive on the surface,
but in fact share a core unifying feature. In contrast to most modeling work appearing in the NIPS
volumes, our model is cast at Marr’s implementation level, not at the level of a computational theory.
However, after introducing our model and showing its predictive power, we discuss an intriguingly
similar Bayesian theory of memory adaptation (Kording et al., 2007). Although our model has a
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strong correspondence with the Bayesian model, their points of difference seem to be crucial for
predicting behavioral phenomena of human declarative memory.

2.1 Encoding-variability theories

One class of theories proposed to explain the spacing effect focuses on the notion of encoding
variability. According to these theories, when an item is studied, a memory trace is formed that
incorporates the current psychological context. Psychological context includes conditions of study,
internal state of the learner, and recent experiences of the learner. Retrieval of a stored item depends
at least in part on the similarity of the contexts at the study and test. If psychological context is
assumed to fluctuate randomly over time, two study sessions close together in time will have similar
contexts. Consequently, at the time of a recall test, either both study contexts will match the test
context or neither will. Increasing the ISI can thus prove advantageous because the test context
will have higher likelihood of matching one study context or the other. Greater contextual variation
enhances memory on this account by making for less redundancy in the underlying memory traces.
However, increasing the ISI also incurs a retrieval cost because random drift makes the first-study
context increasingly less likely to match the test context. The optimal ISI depends on the tradeoff
between the retrieval benefit and cost at test.

Raaijmakers (2003) developed an encoding variability theory by incorporating time-varying contex-
tual drift into the well-known Search of Associative Memory (SAM) model (Raaijmakers & Shiffrin,
1981), and explained a range of data from the spacing literature. In this model, the contextual state is
characterized by a high-dimensional binary vector. Each element of the vector indicates the presence
or absence of a particular contextual feature. The contextual state evolves according to a stochastic
process in which features flip from absent to present at rate π01 and from present to absent at rate
π10. If the context is sampled at two points in time with lag ∆t, the probability that a contextual
feature will be present at both times is

P (feature present at time t and t + ∆t) = β2 + β(1− β) exp(−∆t/τ), (1)
where τ ≡ 1/(π01 +π10) and β ≡ π01τ is the expected proportion of features present at any instant.

To assist in understanding the mechanisms of SAM, we find it useful to recast the model as a neural
network. The input layer to this neural net is a pool of binary valued neurons that represent the
contextual state at the current time; the output layer consists of a set of memory elements, one per
item to be stored. To simplify notation throughout this paper, we’ll describe this model and all
others in terms of a single-item memory, allowing us to avoid an explicit index term for the item
being stored or retrieved. The memory element for the item under consideration has an activation
level, m, which is a linear function of the context unit activities: m =

∑
j wjcj , where cj is the

binary activation level of context unit j and wj is the strength of connection from context j. The
probability of retrieval of the item is assumed to be monotonically related to m.

When an item is studied, its connection strengths are adjusted according to a Hebbian learning rule
with an upper limit on the connection strength:

∆wj = min(1− wj , cjm̂), (2)
where m̂ = 1 if the item was just presented for study, or 0 otherwise. When an item is studied, the
weights for all contextual features present at the time of study will be strengthened. Later retrieval
is more likely if the context at test matches the context at study: the memory element receives
a contribution only when an input is active and its connection strength is nonzero. Thus, after a
single study and lag ∆t, retrieval probability is directly related to Equation 1. When an item has
been studied twice, retrieval will be more robust if the two study opportunities strengthen different
weights, which occurs when the ISI is large and the contextual states do not overlap significantly.

One other feature of SAM is crucial for explaining spacing-effect data. After an item has been
studied at least once, SAM assumes that the memory trace resulting from further study is influenced
by whether the item is accessible to retrieval at the time of study. Specifically, SAM assumes that
the weights have effectively decayed to zero if recall fails. Other memory models similarly claim
that memory traces are weaker if an item is inaccessible to retrieval at the time of study (e.g., Pavlik
& Anderson, 2005), which we label as the retrieval-dependent update assumption.

We have described the key components of SAM that explain the spacing effect, but the model has
additional complexity, including a short-term memory store, inter-item interference, and additional
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context based on associativity and explicit cues. Even with all this machinery, SAM has a serious
limitation. Spacing effects occur on many time scales (Cepeda et al., 2006). SAM can explain
effects on any one time scale (e.g., hours), but the same model cannot explain spacing effects on a
different time scale (e.g., months). The reason is essentially that the exponential decay in context
overlap bounds the time scale at which the model operates.

2.2 Predictive-utility theories

We now turn to another class of theories that has been proposed to explain the spacing effect. These
theories, which we will refer to as predictive-utility theories, are premised on the assumption that
memory is limited in capacity and/or is imperfect and allows intrusions. To achieve optimal per-
formance, memories should therefore be erased if they are not likely to be needed in the future.
Anderson and Milson (1989) proposed a rational analysis of memory from which they estimated
the future need probability of a stored trace. When an item is studied multiple times with a given
ISI, the rational analysis suggests that the need probability drops off rapidly following the last study
once an interval of time greater than the ISI has passed. Consequently, increasing the ISI should
lead to a more persistent memory trace. Although this analysis yields a reasonable qualitative match
to spacing-effect data, no attempt was made to make quantitative predictions.

The notion of predictive utility is embedded in the multiple time-scale or MTS model of Staddon
et al. (2002). In MTS, each item to be stored is represented by a dedicated cascade of N leaky
integrators. The activation of integrator i, xi, decays over time according to:

xi(t + ∆t) = xi(t) exp(−∆t/τi), (3)
where τi is the decay time constant. The probability of retrieving the item is related to the total
trace strength, sN , where sk =

∑k
j=1 xj . The integrators are ordered from shortest to longest time

constant, i.e., τi < τi+1 for all i. When an item is studied, the integrators receive a bump in activity
according to a cascaded error-correction update,

∆xi = ε max(0, 1− si−1), (4)
which is based on the idea that an integrator at some time scale τi receives a boost only if integrators
at shorter time scales fail to represent the item at the time it is studied. The constant ε is a step
size. When an item is repeatedly presented for study with short ISIs, the trace can successfully
be represented by the integrators with short time constants, and consequently, the trace will decay
rapidly. Increasing the spacing shifts the representation to integrators with slower decay rates.

MTS was designed to explain rate-sensitive habituation data from the animal learning literature: the
fact that recovery following spaced stimuli is slower than following massed. We tried fitting MTS
to human-memory data and were unable to obtain quantitatively accurate fits.

3 The multiscale context model (MCM)

SAM and MTS are motivated by quite different considerations, and appear to be unrelated mecha-
nisms. Nonetheless, they share a fundamental property: both suppose an exponential decay of in-
ternal representations over time (compare Equations 1 and 3). When we establish a correspondence
between the mechanisms in SAM and MTS that produce exponential decay, we obtain a synthesis
of the two models that incorporates features of each. Essentially, we take from SAM the notion of
contextual drift and retrieval-dependent update, and from MTS the multiscale representation and the
cascaded error-correction memory update, and we obtain a new model which we call the Multiscale
Context Model or MCM. MCM can be described as a neural network whose input layer consists of
N pools of time-varying context units. Units in pool i operate with time constant τi. The relative
size of pool i is γi. MCM is thus like SAM with multiple pools of context units. MCM can also be
described in terms of N leaky integrators, where integrator i has time constant τi and activity scaled
by γi. MCM is thus like MTS with the addition of scaling factors.

Before formally describing MCM, we detour to explain the choice of the parameters {τi} and {γi}.
As the reader might infer from our description of SAM and MTS, these parameters characterize
memory decay, extending Equation 3 such that the total trace strength at time t is defined as:

sN (t) =
N∑

i=1

γi exp(− t

τi
)xi(0).
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If xi(0) = 1 for all i—which is the integrator activity following the first study in MTS—the trace
strength as a function of time is a mixture of exponentials. To match the form of human forgetting
(Figure 1), this mixture must approximate a power function. We can show that a generalized power
function can be exactly expressed as an infinite mixture of exponentials:

A(1 + Bt)−C = A

∫ ∞

0

Inv-Gamma(τ ;C, 1) exp(
Bt

τ
)dτ,

where Inv-Gamma(τ ;C, 1) is the inverse-gamma probability density function with shape parameter
C and scale 1, and the equality is valid for t ≥ 0 and C > 0. We have identified several finite
mixture-of-exponential formulations that empirically yield an extremely good approximation to ar-
bitrary power functions over ten orders of magnitude. The formulation we prefer defines τi and γi

in terms of four primitive parameters:

τi = µνi and γi = ωξi/

N∑
j=1

ξj . (5)

With ν > 1 and ξ < 1, the higher-order components (i.e., larger indices) represent exponentially
longer time scales with exponentially smaller weighting. As a result, truncating higher-order mixture
components has little impact on the approximation on shorter time scales. Consequently, we simply
need to pick a value of N that allows for a representation of many orders of magnitude of time.
Given N and human forgetting data collected in an experiment, we can search for the parameters
{µ, ν, ω, ξ} that obtain a least squares fit to the data. Given the human forgetting function function,
then, we can completely determine the {τi} and {γi}. In all simulation results we report, we fixed
N = 100, although equivalent results are obtained for N = 50 or N = 200.

3.1 Casting MCM as a cascade of leaky integrators

Assume that—as in MTS—a dedicated set of N leaky integrators hold the memory of each item
to be learned. Let xi denote the activity of integrator i associated with the item, and let si be the
average strength of the first i integrators, weighted by the {γj} terms:

si =
1
Γi

i∑
j=1

γjxj , where Γi =
i∑

j=1

γj .

The recall probability is simply related to the net strength of the item: P (recall) = min(1, sN ).

When an item is studied, its integrators receive a boost in activity. Integrator i receives a boost that
depends on how close the average strength of the first i integrators is to full strength, i.e.,

∆xi = ε(1− si) (6)

where ε is a step size. We adopt the retrieval-dependent update assumption of SAM, and fix ε = 1
for an item that is unsuccessfully recalled at the time of study, and ε = εr > 1 for an item that is
successfully recalled.

This description of MCM is identical to MTS except the following. (1) MTS weighs all integrators
equally when combining the individual integrator activities. MCM uses a γ-weighted average. (2)
MTS provides no guidance in setting the τ and γ constants; MCM constrains these parameters based
on the human forgetting function. (3) The integrator update magnitude is retrieval dependent, as in
SAM. (4) The MCM update rule (Equation 6) is based on si, whereas the MTS rule (Equation 4)
is based on si−1. This modification is motivated by the neural net formulation of MCM, in which
using si allows the update to be interpreted as performing gradient ascent in prediction ability.

3.2 Casting MCM as a neural network

The neural net conceptualization of MCM is depicted in Figure 1b. The input layer is like that of
SAM with the context units arranged in N pools, with γi being the relative size of pool i. The
activity of unit j in pool i is denoted cij . The context units are binary valued and units in pool i flip
with time constant τi. On average a fraction β are on at any time. (β has no effect on the model’s
predictions, and is cancelled out in the formulation that follows.)
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As depicted in Figure 1b, the model also includes a set of N memory elements for each item to
be learned. Memory elements are in one-to-one correspondence with context pools. Activation of
memory element i, denoted mi, indicates strength of retrieval for the item based on context pools
1...i. The activation function is cascaded such that memory element i receives input from context
units in pool i as well as memory element i− 1:

mi = mi−1 +
∑

j

wijcij + b,

where wij is the connection weight from context unit j to memory element i, m0 ≡ 0, and b =
−β/(1−β) is a bias weight. The bias simply serves to offset spurious activity reaching the memory
elements, activity that is unrelated to the fact that the item was previously studied and stored. The
larger the fraction of context units that are on at any time (β), the more spurious activation there will
be that needs to be cancelled out. The probability of recalling the item is related to the activity of
memory element N : P (recall) = min(1,mN ).

When the item is studied, the weights from context units in pool i are adjusted according to an
update rule that performs gradient descent in an error measure Ei = ei

2, where ei = 1 − mi/Γi.
This error is minimized when the memory element i reaches activation level Γi (defined earlier as
the proportion of units in the entire context pool that contributes to activity at stage i). The weight
update that performs gradient descent in Ei is

∆wij =
ε

Nβ(1− β)
eicij , (7)

where ε is a learning rate and the denominator of the first term is a normalization constant which
can be folded into the learning rate. As in SAM, ε is assumed to be contingent on retrieval success
at the start of the study trial, in the manner we described previously.

What is the motivation for minimizing the prediction error at every stage, versus minimizing the
prediction error just at the final stage, EN ? To answer this question, note that there are two con-
sequences of minimizing the error Ei to zero for any i. First, reducing Ei will also likely serve to
reduce El for all l > i. Second, achieving this objective will allow the {wl,j,k : l > i} to all be set
to zero without any effect on the memory. Essentially, there is no need to store information for a
longer time scale than it is needed.

This description of MCM is identical to SAM except: (1) SAM has a single temporal scale of repre-
sentation; MCM has a multiscale representation. (2) SAM’s memory update rule can be interpreted
as Hebbian learning; MCM’s update can be interpreted as error-correction learning.

3.3 Relating leaky integrator and neural net characterizations of MCM

To make contact with MTS, we have described MCM as a cascade of leaky integrators, and to make
contact with SAM, we have described MCM as a neural net. One can easily verify that the leaky-
integrator and neural-net descriptions of MCM are equivalent via the following correspondence be-
tween variables of the two models, where E[.] denotes the expectation over context representations:

si = E[mi]/Γi and xi =

∑
j E[wijcij ] + b

Nβ(1− β)
.

4 Simulations

Cepeda and colleagues (Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; Cepeda et al., in press)
have recently conducted well-controlled experimental manipulations of spacing involving RIs on
educationally relevant time scales of days to months. Most research in the spacing literature involves
brief RIs, on the scale of minutes to an hour, and methodological concerns have been raised with
the few well-known studies involving longer RIs (Cepeda et al., 2006). In Cepeda’s experiments,
participants study a set of paired associates over two sessions. In the first session, participants are
trained until they reach a performance criterion, ensuring that the material has been successfully
encoded. At the start of the second session, participants are tested via a cued-recall paradigm, and
then are given a fixed number of study passes through all the pairs. Following a specified RI, a final
cued-recall test is administered. Recall accuracy at the start of the second session provides the basic
forgetting function, and recall accuracy at test provides the spacing function.
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Figure 2: Modeling and experimental data of (Cepeda et al., in press) (a) Experiment 1 (Swahili-
English), (b) Experiment 2a (obscure facts), and (c) Experiment 2b (object names). The four RI
conditions of Cepeda et al. (2008) are modeled using (d) MCM and (e) the Bayesian multiscale
model of Kording et al. (2007). In panel (e), the peaks of the model’s spacing functions are indicated
by the triangle pointers.

For each experiment, we optimized MCM’s parameters, {µ, ν, ω, ξ}, to obtain a least squares fit to
the forgetting function. These four model parameters determine the time constants and weighting
coefficients of the mixture-of-exponentials approximation to the forgetting function (Equation 5).
The model has only one other free parameter, εr, the magnitude of update on a trial when an item is
successfully recalled (see Equation 6). We chose εr = 9 for all experiments, based on hand tuning
the parameter to fit the first experiment reported here. With εr, MCM is fully constrained and can
make strong predictions regarding the spacing function.

Figure 2 shows MCM’s predictions of Cepeda’s experiments. Panels a-c show the forgetting function
data for the experiments (open blue squares connected by dotted lines), MCM’s post-hoc fit to the
forgetting function (solid blue line), the spacing function data (solid green points connected by
dotted lines), and MCM’s parameter-free prediction of the spacing function (solid green line). The
individual panels show the ISIs studied and the RI. For each experiment, MCM’s prediction of the
peak of the spacing function is entirely consistent with the data, and for the most part, MCM’s
quantiative predictions are excellent. (In panel c, MCM’s predictions are about 20% too low across
the range of ISIs.) Interestingly, the experiments in panels b and c explored identical ISIs and RIs
with two different types of material. With the coarse range of ISIs explored, the authors of these
experiments concluded that the peak ISI was the same independent of the material (28 days). MCM
suggests a different peak for the two sets of material, a prediction that can be evaluated empirically.
(It would be extremely surprising to psychologists if the peak were in general independent of the
material, as content effects pervade the memory literature.)

Panel d presents the results of a complex study involving a single set of items studied with 11 differ-
ent ISIs, ranging from minutes to months, and four RIs, ranging from a week to nearly a year. We
omit the fit to the forgetting function to avoid cluttering the graph. The data and model predictions
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Figure 3: A meta-analysis of the literature by
Cepeda et al. (2006). Each red circle represents
a single spacing experiment in which the ISI was
varied for a given RI. The optimal ISI obtained
in the experiment is plotted against the RI on a
log-log scale. (Note that the data are intrinsically
noisy because experiments typically examine only
a small set of ISIs, from which the ’optimum’ is
chosen.) The X’s represent the mean from 1000
replications of MCM for a given RI with randomly
drawn parameter settings (i.e., random forgetting
functions), and the dashed line is the best regres-
sion fit to the X’s. Both the experimental data and
MCM show a power law relationship between op-
timal ISI and RI.

are color coded by RI, with higher recall accuracy for shorter RIs. MCM predicts the spacing func-
tions with absolutely spectacular precision, considering the predictions are fully constrained and
parameter free. Moreover, MCM anticipates the peaks of the spacing functions, with the curvature
of the peak decreasing with the RI, and the optimal ISI increasing with the RI.

In addition to these results, MCM also predicts the probability of recall at test conditional on suc-
cessful or unsuccessful recall during the test at the start of the second study session. As explained
in Figure 3, MCM obtains a sensible parameter-free fit to a meta-analysis of the experimental liter-
ature by Cepeda et al. (2006). Finally, MCM is able to post-hoc fit classic studies from the spacing
literature (for which forgetting functions are not available).

5 Discussion

MCM’s blind prediction of 7 different spacing functions is remarkable considering that the domain’s
complexity (the content, manner and amount of study) is reduced to four parameters, which are fully
determined by the forgetting function. Obtaining empirical forgetting functions is straightforward.
Obtaining empirical evidence to optimize study schedules, especially when more than two sessions
are involved, is nearly infeasible. MCM thus offers a significant practical tool for educators in
devising study schedules. Optimizing study schedules with MCM is straightfoward, and particularly
useful considering that MCM can optimize not only for a known RI but for RI as a random variable.

MCM arose from two existing models, MTS and SAM, and all three models are characterized at
Marr’s implementation or algorithmic levels, not at the level of a computational theory. Kording et
al. (2007) have proposed a Bayesian memory model which has intriguing similarities to MCM, and
has the potential of serving as the complementary computational theory. The model is a Kalman
filter (KF) with internal state variables that decay exponentially at different rates. The state predicts
the appearance of an item in the temporal stream of experience. The dynamics of MCM can be
exactly mapped onto the KF, with τ related to the decay of a variable, and γ to its internal noise
level. However, the KF model has a very different update rule, based on the Kalman gain. We
have tried to fit experimental data with the KF model, but have not been satisfied with the outcome.
For example, Figure 2e shows a least-squares fit to the six free parameters of the KF model to the
Cepeda et al. (2008) data. (Two parameters determine the range of time scales; two specify internal
and observation noise levels; and two perform an affine transform from internal memory strength to
recall probability.) In terms of sum-squared error, the model shows a reasonable fit, but the model
clearly misses the peaks of the spacing functions, and in fact predicts a peak that is independent
of RI. Notably, the KF model is a post-hoc fit to the spacing functions, whereas MCM produces a
true prediction of the spacing functions, i.e., parameters of MCM are determined without peeking
at the spacing function. Exploring many parameterizations of the KF model, we find that the model
generally predicts decreasing or constant optimal ISIs as a function of the RI. In contrast, MCM
necessarily produces an increasing optimal ISI as a function of the RI, consistent with all behavioral
data. It remains an important and intriguing challenge to unify MCM and the KF model; each has
something to offer the other.
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