Auxiliary Material
Efficient Learning using Forward-Backward Splitting

A Batch Convergence Proofs and Corollaries

Before we begin the proofs, we provide a technical lemma.

Lemma 5 (Bounding Step Differences)Assume that the norms of the subgradients of the functions
f andr are bounded as in Eq. (5):

lof(w)[I* < Af(w) +G*, [|or(w)|* < Ar(w) + G* .

Letni1 < Myt <M and suppose thaf; < 2041 If we use thé=oBOS update of Egs. (2) and
(3), then for a constant < 4 and any vectorw™*,

21, (1 — cAny) f(wy) + 277t+%(1 - CAntJr%)T(wH-l)
<2 f(w*) + 21 (w”) + lwe — w*||* = lwepr —w*|? + T 1 G2 (12)

Proofof Lemma5 We begin with a few simple consequences of the forward-logkubgradient

steps before proceeding with the core of the proof. Note firat for someg{ € 0f(w) and
gi1 € Or(wy1), we have as in Eq. (4)

Wiy —wy = —nig — Meyi9isn - (13)

The definition of a subgradient implies that for agfy, , € Or(w;41) (and similarly for anygic €
f (wy) with f(w;) andf(w*)) implies that

r(w*) > r(wep)+{gh 1w —wep1) = — (gl Wi — w) <r(w*)—r(wig). (14)

From the Cauchy-Shwartz Inequality and Eqg. (13), we obtain

<g:+17(wt+1 _wt)> = <9§+17(—77tg{ —77t+%9§+1)>
< llgiallll r gl < gy 1 I% + nellgia gl |
= t+ 1M1 Ge1 TG Il = My 21941 MllGe+111119t
S Myl (AT(le) + GQ) + 1 max {Af(wt) +G?, Ar(wiy) + GQ} . (15)

We now proceed to bound the difference betwagnandw;,,, and using a telescoping sum we
will eventually boundf (w;) + r(w;) — f(w*) — r(w*). First, we expand norm squared of the
difference betweew, andw;, 1,

i1 —w*||* = |[w, — (mg] +n419741) — w*||?
= s = w? =2 [ (9] wi —w* )+ my (970w — w")] + Img] + ey 9t P

Jwy — w*||* — 2n, <gf, w; — w*> + gl + nes 195

=201 (9011 Wit — W) = (gL, Wi —wy)] (16)

We can bound the third term above by noting that

[ 77t+%9:+1||2

it gl 12 + 2nmeyy (gt o gben) + 02 lgia |
M Af(we) + 2400,y max {f(we), r(wern)} + 07y Ar(ween) + 497G

IN
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We now use Eq. (15) to bound the last term of Eq. (16) and theeabound omtg{ + My 1900
to get that

lwesr — w*?

< lwy —w*|* -2, <9{,'wt - 'w*> — 20,11 {gh 1 wen — w*) + [Ing] + 151970

+ 2741 (Ut+%A7”(’wt+1) + 2An; max{f(wy), r(we1)} + 277tG2)

< lwe = w* [P 2 (f(w”) = f(we)) + 21 (r(w”) —r(we)) + 777 G?
+ anf('wt) + 3A77t77t+% max { f(wy), r(wt)} + 277t2+éA7“(wt+1) a7
< lwy — w* | + PG

+ 2 (f(w”) — (1 — cAm) fwy)) + 2y 1 (T(W*) -(1- cAnH%)T(wm)) . (18)
To obtain Eq. (17) we used the standard convexity bounddlediad earlier in Eq. (14). The
final bound given by Eg. (18) is due to the fact tlﬁaAan% < 6An? and that fora,b > 0,

max{a, b} < a +b. Moving the f(-) andr(-) terms to the left hand side of the gives the desired
inequality. O

Using the above lemma, the analysis fadosin a batch setting is straightforward. In this setting
we setr), 1 = 141 and updatew, to w,; as prescribed by Eq. (2) and Eq. (3).

Proof of Theorem 1  Rearranging thef (w*) andr(w*) terms from the bound in lemma 5, we
sum the loss terms overfrom 1 throughl” and get a canceling telescoping sum:
T

DI (1= cAn) f(we) = f(w")) + o1 (1= cAnesr )r(wis) = r(w”))]

t=1

T T
< wy = w*lP = fwry —wt P+ 7G> 0 < flwy —w* P +7G?) 07 . (19)
t=1 t=1

Now we bound the one-off(w;1) terms by noting that

ténm ((1 = A )r(wiir) — r(w*))
) i” (1= cAm)r(wd) = r(w*) +nr1 (1= cAnroa)r(wen) = r(w?) + mr(w?)
: im (1= cAn)r(wigr) = r(w*) +r(w*)(m —nr+1)
> im (1 = cAny)r(wy) — r(w*)) . o0

Using the fact thafw; — w*|| = ||w*|| < D, we combine Eq. (19)) with Eq. (20) to get the desired
bound. O

Corollary 6 (Convergence of decreasing step sizésysume that the conditions of Thm. 1 hold and
the step sizes, are such thaty, — 0, and that)_;~, 7, = cc. Then

litrgior‘}ff(wt) +r(w) — (f(w*) +r(w*)) =0 .

We can give tighter convergence results when we assumg tnradr are Lipschitz or when we can
guarantee that thg f|| and||0r|| are bounded. In this case, we have
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Corollary 7. In addition to the conditions of Thm. 1, assume that the ndremg subgradient from
0df and the norm of any subgradient fradm are bounded byz. Then

T
DS g

min wy) +r(wy)) — (f(w*) +r(w*)) < 21
e (100 +r(w00) = (Fl) rw)) € =g (21)
Corollary 8 (Optimal fixed step rate)Assume that the conditions of Cor. 7 hold and that we run
FoBosfor a predefined! iterations withn, = %. Then the following bound holds.
3DG
i + - )+ r(w*)) < —.
ie{q}}%}f(wt) r(we) = (f(w") +r(w”)) < 7T

In corollaries 7 and 8, our assumption on bounded subgrediéthe functiong’ andr is in practice
not restrictive. If we know that an optimab* lies in some closed and bounded §etind that
Q C dom(f 4+ r), then [17, Theorem 24.7] guarantees thatandor are bounded fow € 2. The
lingering question is thus whether we can guarantee th&itsset? exists and that our iterates,
remain in{). We now describe a simple setting to show th#tandor are indeed often bounded.
If r(w) is a norm andf is lower bounded by), then we know that (w*) < f(w*) + r(w*) <
f(w1) + r(wy). Using standard bounds on norms, we get that for spme0)

[w*]l oo < yr(w”) <(f(wi) +r(wi)) =7 f(wi) ,

where for the last inequality we used the assumptionsthat; ) = 0. Thus, we obtain thaw™* lies
in a hypercube. We can easily project onto this box by tringatlements otw; lying outside it
at any iteration without affecting the bounds in Eq. (21).nGetely, this follows since Euclidean
projectionll, to a convex sef with w* € Q satisfieq|Ilo(wi41) —w*|| < ||wer1 —w*||. Further,
so long aq is a norm ball, we know that

r(Ho(wiy)) < r(wer) - (22)

Thus, looking at Eq. (17) in our proof of Theorem 1 we noticagt t{w*) — r(w+1) < r(w*) —
r(Io(w:41)) and the series of inequalities through Eq. (18) still holdtwA = 0). In general,
so long as Eq. (22) holds and* € 2, we can projectv,; into Q2 without affecting convergence
guarantees.

B Online Regret Proofs and Corollaries

Proof of Theorem 3 Looking at lemma 5, we immediately see thatdff || and||0r|| are bounded
by G,
* * 1 * |12 * |12 7 2
fe(we) = fe(w”) + r(wip1) — r(w”) < o (lwe = w*||* = werr — w*|?) + 3G e (23)

Now we use Eq. (23) to obtain that

[M]=

Rpyr(T) = (fe(we) = fe(w™) +7r(we) — r(w”)) + r(wrir) — r(w*) —r(wr) + r(w”)
t=1
4 7G?
< GD+ ; zim (lw — w*|? = |werr — w*|?) + Ep M

sincer(w) < r(0) + G||w|| < GD. We can rewrite the above bound and see

11 ) 762 &
— ) Y
N Mi—1 2

T
1 * 1 *
Rf+7-(T) < GD—F%”’UM—W H2+§Z||Wt_w H2 (
t=2 t=1

D2 p2t/1 1 G2 &
T TE(L 1) o8,
2m 2 M Mi—1 2

t=2 t=1
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where we used again the bound on the distance of @adb w* for the last inequality. Lastly, we
use the fact that the sugy + Zfzz(% — —1) telescopes and get that

n Mt—1
D? TG &
Rpyr(T) < GD+ — +—3S 1
2nr 2 p
. .. . T
Settingn, = ¢/+/t and recognizing as in [7] that,_, n; < 2¢v/T concludes the proof. O

We assume as in Sec. 3 that we are minimizjitgy) + r(w). Suppose that on each step ab-F
BOS, we choose instead of song% € Jf(w;) a stochastic estimate of the gradi@{t where

E[g{] € Of (w). We assume that we still use the truéwhich is generally easy, as it is simply
the regularization function). It is straightforward to uBkeorem 3 above as in the derivation of
Theorems 2 and 3 from [14] to derive the following corollarytbe convergence rate of stochastic
FoBos

Corollary 9. Assume that the conditions éxf, dr, andw* hold as in the previous theorems and
let FoBosbe run forT iterations. Lets be an integer chosen uniformly at random fréin. .., 7T}.
_ _D
If N = m, then
2GD +4GDVT
T .

With probability at least — 8, f(ws) + r(ws) < f(w*) + r(w*) + 2GRHCDVT

E[f(ws) +r(wy)] < f(w”) +r(w”) +

C High-dimensional Efficiency

Proof of Proposition 4 It suffices to show that the proposition is correct for= 2 and then
use an inductive argument, because the proposition tgivialds for7T = 1. We provide here a
direct proof for each norm separately by examining the wgslate derived in Sec. 4 and showing
thatw, = w*.

Note that the objective functions are separablg;fer 1. Therefore, for; -regularization it suffices
to prove the proposition for any component of the veetorWe omit the index of the component
and denote byug, wy, ws, w3, ... one coordinate ofv along the iterations gP.1 and byw* the
result for the same component when solvin@. We need to show that* = w,. Expanding the
£1-update of Eq. (6) over two iterations we get the following:

wy = sign(wi) [Jwi| — A2], = sign(wy) [|sign(wo) [Jwol — /\1]+| - )\2]+

sign(wo) [Jwo| — A1 — Ao,
where we used the positivity 0f |. ExaminingP.2 and using Eq. (6) again we get
w* = sign(wo) [Jwo| — A1 — Aa] | -
Thereforew* = w, as claimed.
Next we prove the proposition fdk, returning to using the entire vector for the proof. Using th

explicit £5-update from Eq. (7), we can expand the norm of the veetpdue to the prograr®.1
as follows,

A
fall = [1- 22| ool = (ool = A, -
[lwoll | + "
Similarly, we get thaf|w.|| = [[|w: || — 2] . Combining the norm equalities we see that the norm

of ws due to the succession of the two updates is
[wall = [[lwoll =Ml = Xo], = [llwoll = A = Ao]y -
Computing directly the norm afy* due to the update given by Eq. (7) yields
AL+ Ao

| = [1} fwoll = [lwoll = M o], .
Twol |, .
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Thus,w* andwsy have the same norm. Since the update itself retains thetidineaf the original
vectorwg, we get thatw* = w- as needed.

We now turn to the most complicated update and proof of theethiorms, thé., norm. We start
by recapping the progran®.1 andP.2 for T' = 2 andq = oo,

1
Pl: wy = argmin{2|w—w0||2+)\1||w|oo} (24)
. f1 2
wy = argming ofw—wif” + A fwl (25)
w
1
P2: w* = argmin{2w—v||§+()\1—|—)\2)w||oo} . (26)
w

We prove the equivalence of the two programs in two stagest, Wie examine the cagev, ||, >

A1+ A2, and then consider the complement cgag||, < A1 + A2. For concreteness and simplicity,
we assume thaib, > 0, since, clearly, the objective is symmetricn, and —w,. We thus can
assume that all entries af, are non-negative. In the proof we use the following opegafet , now
denotes the positive component of each entry,efiin{v, #} denotes the component-wise minimum
between the elements ofandd, and likewisenax{v, 6} is the component-wise maximum. Starting
with the casd|wyl|; > A1 + A2, we examine Eq. (24). From Lagrange duality we know that that
w; = wy — ay, Wherea; is the solution of

o1
m1n7||a—w0\|§ st o[, < Ar
a 2

As described by [6] and reviewed above in Seax4,= [wg — 91]+ for somef; € R,. The form
of a; readily translates to the following form fap;: w; = wo — a1 = min(wy, #1). Applying
similar reasoning to the second steprfl yieldswy = w; — as = wy — a; — ag, Whereas is
the minimizer of

1 2 1 2
5 lle—willy =Sl = (wo —an)ll; st lall, <Az .

Again, we havers = [w; — 92]+ = [wy — a1 — 02]+ for somef, € R,. The successive steps
then imply that
wo = min{ws, 02} = min {min{wy, 01 },02} .

We next show that regardless of tlie-norm of wg, 65 < 6. Intuitively, if 6, > 6, the
second minimization step d?.1 would perform no shrinkage afv; to getw,. Formally, as-
sume for the sake of contradiction that > 6;. Under this assumption, we would have that
wo = min{min{wo, 61 },02} = min{wyp, 61} = w;. In turn, we obtain thad belongs to the
subgradient set of Eq. (25) when evaluatewat w1, thus,

0cw, —w; +)\28\\w1\\00 = )\28”11)1”00 .

Clearly, the seb ||w ||, can contairD only whenw; = 0. Since we assumed that < [|wo]|,,
and hence thaty; < wg anda; # wq, we have thatv; = wg — a1 # 0. This contradiction
implies thatd, < 6.

We now examine the solution vectors to the dual problem®df «; andas. We know that
lar]l; = A1 sothatjwo — ai||; > A2 and hencex, is at the boundarjjai ||, = A2 (See again [6]).
Furthermore, the sum of the these vectors is

a1+a2:[w0—91]++[wo—[w0—91]+—92]+. 27)

Let v denote a component ab, greater thar$);. For any such component the right hand side of
Eq. (27) amounts to

[V—(v—"01) =02, +v—0i], =[01 2], +v—01=v—0,=[v—01],  ,

where we used the fact th&t < 6, to eliminate the ternfp; — 92]+. Next, letu denote a component
of wo smaller thard, . In this case, the right hand side of Eq. (27) amoun{ate 0 — 62], +0 =
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[u — 62] , . Recapping, the end result is that the vector sumi- v, equalsw, — 6], . Moreover,
a; anday are inR’} as we assumed that, = 0, and thus

[ [wo —62], [[1 = [l + azll1 = A1+ A . (28)

We now show thaP.2 has the same dual solution as the sequential updates abluweludl ofP.2
is

1
ngniﬂa—woﬂg st [lefly < A1+ Ao

Denoting byay the solution of the above dual problem, we havé = wg — ap andagy =
[wo — 0], for somed € R,.. Examining the norm oéx, we obtain that

leolly = [[[wo — 6] ]|, = M + A2 (29)

because we assumed thaio||, > A1 + Ao. We can view the termg[w, — 6] , ||, from Eq. (28)
and||[wo — 0] ||, from Eq. (29) as functions df, andd, respectively. The functions are strictly
decreasing functions df and 6, over the interval0, |[wo||..]. Therefore, they are invertible for
0 < A1+ A2 < |Jwoll;. Sincel|[wo — 9]+H1 = ||[wo — 92]+H1, we must haved, = 6. Recall
that the solution of Eq. (26) im* = min{wy,#}, and the solution of the sequential update in-
duced by Eq. (24) and Eq. (25)isin{min{wy, 61}, 02} = min{wy, 62}. The programg.1 and
P.2 therefore result in the same veciain{wy, 62} = min{wy, #} and their induced updates are
equivalent.

We now examine the case whélm||, < A; + Ao. If the 1-norm of w, is also smaller than
A1, Jlwoll; < A1, then the dual solution for the first step 81 is a; = wy, which makes
w; = wg — &1 = 0 and hencavs, = 0. The dual solution for the combined problem is clearly
ap = wo; again,w* = wy — ap = 0. We are thus left with the casg < [|wo|; < A1 + Aa.
We straightforwardly get that the solution to Eq. (26w = 0. We now prove that the iterated
solution obtained byP.1 results in the zero vector as well. First, consider the dohlt®n a4,
which is the minimizer of|a — wol|* subject tofa||, < A;. Sincea; = [wo — 6;], for some

6, > 0, we know that each component af is between zero and its corresponding component in
wy, therefore||wo — o ||; = ||lwoll; — [lall; = |lwoll; — A1 < A2. The dual of the second step
of P.1 distills to the minimization} | — (wo — c1)||? subject tof|a||; < A2. Since we showed
that||wy — af|; < A2, we getas = wy — a;. This means thafl, = 0. Recall that the solution
of P.1is min{wy, 62}, which amounts to the zero vector whén= 0. We have thus showed that
both optimization problems result in the zero vector. Thisvps the equaivalence #f.1 andP.2

for ¢ = oc. O
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