
Auxiliary Material
Efficient Learning using Forward-Backward Splitting

A Batch Convergence Proofs and Corollaries

Before we begin the proofs, we provide a technical lemma.

Lemma 5 (Bounding Step Differences). Assume that the norms of the subgradients of the functions
f andr are bounded as in Eq. (5):

‖∂f(w)‖2 ≤ Af(w) + G2, ‖∂r(w)‖2 ≤ Ar(w) + G2 .

Let ηt+1 ≤ ηt+ 1
2
≤ ηt and suppose thatηt ≤ 2ηt+ 1

2
. If we use theFOBOS update of Eqs. (2) and

(3), then for a constantc ≤ 4 and any vectorw⋆,

2ηt(1 − cAηt)f(wt) + 2ηt+ 1
2
(1 − cAηt+ 1

2
)r(wt+1)

≤ 2ηtf(w⋆) + 2ηt+ 1
2
r(w⋆) + ‖wt − w

⋆‖2 − ‖wt+1 − w
⋆‖2 + 7ηtηt+ 1

2
G2 . (12)

Proof of Lemma 5 We begin with a few simple consequences of the forward-looking subgradient
steps before proceeding with the core of the proof. Note firstthat for somegf

t ∈ ∂f(wt) and
g

r
t+1 ∈ ∂r(wt+1), we have as in Eq. (4)

wt+1 − wt = −ηtg
f
t − ηt+ 1

2
g

r
t+1 . (13)

The definition of a subgradient implies that for anyg
r
t+1 ∈ ∂r(wt+1) (and similarly for anygf

t ∈
∂f(wt) with f(wt) andf(w⋆)) implies that

r(w⋆) ≥ r(wt+1)+
〈

g
r
t+1,w

⋆ − wt+1

〉

⇒ −
〈

g
r
t+1,wt+1 − w

⋆
〉

≤ r(w⋆)−r(wt+1). (14)

From the Cauchy-Shwartz Inequality and Eq. (13), we obtain

〈

g
r
t+1, (wt+1 − wt)

〉

=
〈

g
r
t+1, (−ηtg

f
t − ηt+ 1

2
g

r
t+1)

〉

≤ ‖gr
t+1‖‖ηt+ 1

2
g

r
t+1 + ηtg

f
t ‖ ≤ ηt+ 1

2
‖gr

t+1‖2 + ηt‖gr
t+1‖‖gf

t ‖
≤ ηt+ 1

2

(

Ar(wt+1) + G2
)

+ ηt max
{

Af(wt) + G2, Ar(wt+1) + G2
}

. (15)

We now proceed to bound the difference betweenw
⋆ andwt+1, and using a telescoping sum we

will eventually boundf(wt) + r(wt) − f(w⋆) − r(w⋆). First, we expand norm squared of the
difference betweenwt andwt+1,

‖wt+1 − w
⋆‖2 = ‖wt − (ηtg

f
t + ηt+ 1

2
g

r
t+1) − w

⋆‖2

= ‖wt − w
⋆‖2 − 2

[

ηt

〈

g
f
t ,wt − w

⋆
〉

+ ηt+ 1
2

〈

g
r
t+1,wt − w

⋆
〉

]

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

= ‖wt − w
⋆‖2 − 2ηt

〈

g
f
t ,wt − w

⋆
〉

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

−2ηt+ 1
2

[〈

g
r
t+1,wt+1 − w

⋆
〉

−
〈

g
r
t+1,wt+1 − wt

〉]

. (16)

We can bound the third term above by noting that

‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

= η2
t ‖gf

t ‖2 + 2ηtηt+ 1
2

〈

g
f
t , gr

t+1

〉

+ η2
t+ 1

2

‖gr
t+1‖2

≤ η2
t Af(wt) + 2Aηtηt+ 1

2
max {f(wt), r(wt+1)} + η2

t+ 1
2

Ar(wt+1) + 4η2
t G2 .

10



We now use Eq. (15) to bound the last term of Eq. (16) and the above bound onηtg
f
t + ηt+ 1

2
g

r
t+1

to get that

‖wt+1 − w
⋆‖2

≤ ‖wt − w
⋆‖2 − 2ηt

〈

g
f
t ,wt − w

⋆
〉

− 2ηt+ 1
2

〈

g
r
t+1,wt+1 − w

⋆
〉

+ ‖ηtg
f
t + ηt+ 1

2
g

r
t+1‖2

+ 2ηt+ 1
2

(

ηt+ 1
2
Ar(wt+1) + 2Aηt max{f(wt), r(wt+1)} + 2ηtG

2
)

≤ ‖wt − w
⋆‖2 + 2ηt (f(w⋆) − f(wt)) + 2ηt+ 1

2
(r(w⋆) − r(wt)) + 7η2

t G2

+ η2
t Af(wt) + 3Aηtηt+ 1

2
max {f(wt), r(wt)} + 2η2

t+ 1
2

Ar(wt+1) (17)

≤ ‖wt − w
⋆‖2 + 7η2

t G2

+ 2ηt (f(w⋆) − (1 − cAηt)f(wt)) + 2ηt+ 1
2

(

r(w⋆) − (1 − cAηt+ 1
2
)r(wt+1)

)

. (18)

To obtain Eq. (17) we used the standard convexity bounds established earlier in Eq. (14). The
final bound given by Eq. (18) is due to the fact that3Aηtηt+ 1

2
≤ 6Aη2

t and that fora, b ≥ 0,
max{a, b} ≤ a + b. Moving thef(·) andr(·) terms to the left hand side of the≤ gives the desired
inequality.

Using the above lemma, the analysis for FOBOS in a batch setting is straightforward. In this setting
we setηt+ 1

2
= ηt+1 and updatewt to wt+1 as prescribed by Eq. (2) and Eq. (3).

Proof of Theorem 1 Rearranging thef(w⋆) andr(w⋆) terms from the bound in lemma 5, we
sum the loss terms overt from 1 throughT and get a canceling telescoping sum:

T
∑

t=1

[ηt ((1 − cAηt)f(wt) − f(w⋆)) + ηt+1 ((1 − cAηt+1)r(wt+1) − r(w⋆))]

≤ ‖w1 − w
⋆‖2 − ‖wT+1 − w

⋆‖2 + 7G2
T
∑

t=1

η2
t ≤ ‖w1 − w

⋆‖2 + 7G2
T
∑

t=1

η2
t . (19)

Now we bound the one-offr(wt+1) terms by noting that

T
∑

t=1

ηt+1 ((1 − cAηt+1)r(wt+1) − r(w⋆))

=

T
∑

t=1

ηt ((1 − cAηt)r(wt) − r(w⋆)) + ηT+1 ((1 − cAηT+1)r(wt+1) − r(w⋆)) + η1r(w
⋆)

≥
T
∑

t=1

ηt ((1 − cAηt)r(wt+1) − r(w⋆)) + r(w⋆)(η1 − ηT+1)

≥
T
∑

t=1

ηt ((1 − cAηt)r(wt) − r(w⋆)) . (20)

Using the fact that‖w1 −w
⋆‖ = ‖w⋆‖ ≤ D, we combine Eq. (19)) with Eq. (20) to get the desired

bound.

Corollary 6 (Convergence of decreasing step sizes). Assume that the conditions of Thm. 1 hold and
the step sizesηt are such thatηt → 0, and that

∑∞
t=1 ηt = ∞. Then

lim inf
t→∞

f(wt) + r(wt) − (f(w⋆) + r(w⋆)) = 0 .

We can give tighter convergence results when we assume thatf andr are Lipschitz or when we can
guarantee that the‖∂f‖ and‖∂r‖ are bounded. In this case, we have
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Corollary 7. In addition to the conditions of Thm. 1, assume that the norm of any subgradient from
∂f and the norm of any subgradient from∂r are bounded byG. Then

min
t∈{1,...,T}

(f(wt) + r(wt)) − (f(w⋆) + r(w⋆)) ≤ D2 + 7G2
∑T

t=1 η2
t

2
∑T

t=1 ηt

. (21)

Corollary 8 (Optimal fixed step rate). Assume that the conditions of Cor. 7 hold and that we run
FOBOS for a predefinedT iterations withηt = D√

7TG
. Then the following bound holds.

min
i∈{1,...,T}

f(wt) + r(wt) − (f(w⋆) + r(w⋆)) ≤ 3DG√
T

.

In corollaries 7 and 8, our assumption on bounded subgradients of the functionsf andr is in practice
not restrictive. If we know that an optimalw⋆ lies in some closed and bounded setΩ and that
Ω ⊆ dom(f + r), then [17, Theorem 24.7] guarantees that∂f and∂r are bounded forw ∈ Ω. The
lingering question is thus whether we can guarantee that such a setΩ exists and that our iterateswt

remain inΩ. We now describe a simple setting to show that∂f and∂r are indeed often bounded.
If r(w) is a norm andf is lower bounded by0, then we know thatr(w⋆) ≤ f(w⋆) + r(w⋆) ≤
f(w1) + r(w1). Using standard bounds on norms, we get that for someγ > 0

‖w⋆‖∞ ≤ γr(w⋆) ≤ γ(f(w1) + r(w1)) = γf(w1) ,

where for the last inequality we used the assumption thatr(w1) = 0. Thus, we obtain thatw⋆ lies
in a hypercube. We can easily project onto this box by truncating elements ofwt lying outside it
at any iteration without affecting the bounds in Eq. (21). Concretely, this follows since Euclidean
projectionΠΩ to a convex setΩ with w

⋆ ∈ Ω satisfies‖ΠΩ(wt+1)−w
⋆‖ ≤ ‖wt+1−w

⋆‖. Further,
so long asΩ is a norm ball, we know that

r(ΠΩ(wt+1)) ≤ r(wt+1) . (22)

Thus, looking at Eq. (17) in our proof of Theorem 1 we notice that r(w⋆) − r(wt+1) ≤ r(w⋆) −
r(ΠΩ(wt+1)) and the series of inequalities through Eq. (18) still hold (with A = 0). In general,
so long as Eq. (22) holds andw⋆ ∈ Ω, we can projectwt+1 into Ω without affecting convergence
guarantees.

B Online Regret Proofs and Corollaries

Proof of Theorem 3 Looking at lemma 5, we immediately see that if‖∂f‖ and‖∂r‖ are bounded
by G,

ft(wt) − ft(w
⋆) + r(wt+1) − r(w⋆) ≤ 1

2ηt

(

‖wt − w
⋆‖2 − ‖wt+1 − w

⋆‖2
)

+
7

2
G2ηt. (23)

Now we use Eq. (23) to obtain that

Rf+r(T ) =
T
∑

t=1

(ft(wt) − ft(w
⋆) + r(wt) − r(w⋆)) + r(wT+1) − r(w⋆) − r(w1) + r(w⋆)

≤ GD +
T
∑

t=1

1

2ηt

(

‖wt − w
⋆‖2 − ‖wt+1 − w

⋆‖2
)

+
7G2

2

T
∑

t=1

ηt

sincer(w) ≤ r(0) + G‖w‖ ≤ GD. We can rewrite the above bound and see

Rf+r(T ) ≤ GD +
1

2η1
‖w1 − w

⋆‖2 +
1

2

T
∑

t=2

‖wt − w
⋆‖2

(

1

ηt
− 1

ηt−1

)

+
7G2

2

T
∑

t=1

ηt

≤ GD +
D2

2η1
+

D2

2

T
∑

t=2

(

1

ηt
− 1

ηt−1

)

+
7G2

2

T
∑

t=1

ηt ,
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where we used again the bound on the distance of eachwt to w
⋆ for the last inequality. Lastly, we

use the fact that the sum1η1
+
∑T

t=2(
1
ηt

− 1
ηt−1

) telescopes and get that

Rf+r(T ) ≤ GD +
D2

2ηT
+

7G2

2

T
∑

t=1

ηt .

Settingηt = c/
√

t and recognizing as in [7] that
∑T

t=1 ηt ≤ 2c
√

T concludes the proof.

We assume as in Sec. 3 that we are minimizingf(w) + r(w). Suppose that on each step of FO-
BOS, we choose instead of somegf

t ∈ ∂f(wt) a stochastic estimate of the gradientg̃
f
t where

E[g̃f
t ] ∈ ∂f(wt). We assume that we still use the truer (which is generally easy, as it is simply

the regularization function). It is straightforward to useTheorem 3 above as in the derivation of
Theorems 2 and 3 from [14] to derive the following corollary on the convergence rate of stochastic
FOBOS.

Corollary 9. Assume that the conditions on∂f , ∂r, andw
⋆ hold as in the previous theorems and

let FOBOSbe run forT iterations. Lets be an integer chosen uniformly at random from{1, . . . , T}.
If ηt = D

4G
√

t
, then

Es[f(ws) + r(ws)] ≤ f(w⋆) + r(w⋆) +
2GD + 4GD

√
T

T
.

With probability at least1 − δ, f(ws) + r(ws) ≤ f(w⋆) + r(w⋆) + 2GD+4GD
√

T
δT .

C High-dimensional Efficiency

Proof of Proposition 4 It suffices to show that the proposition is correct forT = 2 and then
use an inductive argument, because the proposition trivially holds for T = 1. We provide here a
direct proof for each norm separately by examining the updates we derived in Sec. 4 and showing
thatw2 = w

⋆.

Note that the objective functions are separable forq = 1. Therefore, forℓ1-regularization it suffices
to prove the proposition for any component of the vectorw. We omit the index of the component
and denote byw0, w1, w2, w3, . . . one coordinate ofw along the iterations ofP.1 and byw⋆ the
result for the same component when solvingP.2. We need to show thatw⋆ = w2. Expanding the
ℓ1-update of Eq. (6) over two iterations we get the following:

w2 = sign(w1) [|w1| − λ2]+ = sign(w1)
[
∣

∣sign(w0) [|w0| − λ1]+
∣

∣− λ2

]

+

= sign(w0) [|w0| − λ1 − λ2]+ ,

where we used the positivity of| · |. ExaminingP.2 and using Eq. (6) again we get

w⋆ = sign(w0) [|w0| − λ1 − λ2]+ .

Therefore,w⋆ = w2 as claimed.

Next we prove the proposition forℓ2, returning to using the entire vector for the proof. Using the
explicit ℓ2-update from Eq. (7), we can expand the norm of the vectorw1 due to the programP.1
as follows,

‖w1‖ =

[

1 − λ1

‖w0‖

]

+

‖w0‖ = [ ‖w0‖ − λ1]+ .

Similarly, we get that‖w2‖ = [‖w1‖ − λ2]+. Combining the norm equalities we see that the norm
of w2 due to the succession of the two updates is

‖w2‖ =
[

[‖w0‖ − λ1]+ − λ2

]

+
= [‖w0‖ − λ1 − λ2]+ .

Computing directly the norm ofw⋆ due to the update given by Eq. (7) yields

‖w⋆‖ =

[

1 − λ1 + λ2

‖w0‖

]

+

‖w0‖ = [‖w0‖ − λ1 − λ2]+ .
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Thus,w⋆ andw2 have the same norm. Since the update itself retains the direction of the original
vectorw0, we get thatw⋆ = w2 as needed.

We now turn to the most complicated update and proof of the three norms, theℓ∞ norm. We start
by recapping the programsP.1 andP.2 for T = 2 andq = ∞,

P.1 : w1 = argmin
w

{

1

2
‖w − w0‖2 + λ1 ‖w‖∞

}

(24)

w2 = argmin
w

{

1

2
‖w − w1‖2 + λ2 ‖w‖∞

}

, (25)

P.2 : w
⋆ = argmin

w

{

1

2
‖w − v‖2

2 + (λ1 + λ2) ‖w‖∞
}

. (26)

We prove the equivalence of the two programs in two stages. First, we examine the case‖w0‖1 >
λ1 +λ2, and then consider the complement case‖w0‖1 ≤ λ1 +λ2. For concreteness and simplicity,
we assume thatw0 � 0, since, clearly, the objective is symmetric inw0 and−w0. We thus can
assume that all entries ofw0 are non-negative. In the proof we use the following operators: [v]+ now
denotes the positive component of each entry ofv, min{v, θ} denotes the component-wise minimum
between the elements ofv andθ, and likewisemax{v, θ} is the component-wise maximum. Starting
with the case‖w0‖1 > λ1 + λ2, we examine Eq. (24). From Lagrange duality we know that that
w1 = w0 − α1, whereα1 is the solution of

min
α

1

2
‖α − w0‖2

2 s.t. ‖α‖1 ≤ λ1 .

As described by [6] and reviewed above in Sec. 4,α1 = [w0 − θ1]+ for someθ1 ∈ R+. The form
of α1 readily translates to the following form forw1: w1 = w0 − α1 = min(w0, θ1). Applying
similar reasoning to the second step ofP.1 yieldsw2 = w1 − α2 = w0 − α1 − α2, whereα2 is
the minimizer of

1

2
‖α − w1‖2

2 =
1

2
‖α − (w0 − α1)‖2

2 s.t. ‖α‖1 ≤ λ2 .

Again, we haveα2 = [w1 − θ2]+ = [w0 − α1 − θ2]+ for someθ2 ∈ R+. The successive steps
then imply that

w2 = min{w1, θ2} = min {min{w0, θ1}, θ2} .

We next show that regardless of theℓ1-norm of w0, θ2 ≤ θ1. Intuitively, if θ2 > θ1, the
second minimization step ofP.1 would perform no shrinkage ofw1 to get w2. Formally, as-
sume for the sake of contradiction thatθ2 > θ1. Under this assumption, we would have that
w2 = min{min{w0, θ1}, θ2} = min{w0, θ1} = w1. In turn, we obtain that0 belongs to the
subgradient set of Eq. (25) when evaluated atw = w1, thus,

0 ∈ w1 − w1 + λ2∂ ‖w1‖∞ = λ2∂ ‖w1‖∞ .

Clearly, the set∂ ‖w1‖∞ can contain0 only whenw1 = 0. Since we assumed thatλ1 < ‖w0‖1,
and hence thatα1 � w0 andα1 6= w0, we have thatw1 = w0 − α1 6= 0. This contradiction
implies thatθ2 ≤ θ1.

We now examine the solution vectors to the dual problems ofP.1, α1 and α2. We know that
‖α1‖1 = λ1 so that‖w0 − α1‖1 > λ2 and henceα2 is at the boundary‖α2‖1 = λ2 (see again [6]).
Furthermore, the sum of the these vectors is

α1 + α2 = [w0 − θ1]+ +
[

w0 − [w0 − θ1]+ − θ2

]

+
. (27)

Let v denote a component ofw0 greater thanθ1. For any such component the right hand side of
Eq. (27) amounts to

[v − (v − θ1) − θ2]+ + [v − θ1]+ = [θ1 − θ2]+ + v − θ1 = v − θ1 = [v − θ1]+ ,

where we used the fact thatθ2 ≤ θ1 to eliminate the term[θ1 − θ2]+. Next, letu denote a component
of w0 smaller thanθ1. In this case, the right hand side of Eq. (27) amounts to[u − 0 − θ2]+ + 0 =
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[u − θ2]+. Recapping, the end result is that the vector sumα1 + α2 equals[w0 − θ2]+. Moreover,
α1 andα2 are inR

n
+ as we assumed thatw0 � 0, and thus

‖ [w0 − θ2]+ ‖1 = ‖α1 + α2‖1 = λ1 + λ2 . (28)

We now show thatP.2 has the same dual solution as the sequential updates above. The dual ofP.2
is

min
α

1

2
‖α − w0‖2

2 s.t. ‖α‖1 ≤ λ1 + λ2.

Denoting byα0 the solution of the above dual problem, we havew
⋆ = w0 − α0 and α0 =

[w0 − θ]+ for someθ ∈ R+. Examining the norm ofα0 we obtain that

‖α0‖1 =
∥

∥[w0 − θ]+
∥

∥

1
= λ1 + λ2 (29)

because we assumed that‖w0‖1 > λ1 + λ2. We can view the terms
∥

∥[w0 − θ2]+
∥

∥

1
from Eq. (28)

and
∥

∥[w0 − θ]+
∥

∥

1
from Eq. (29) as functions ofθ2 andθ, respectively. The functions are strictly

decreasing functions ofθ andθ2 over the interval[0, ‖w0‖∞]. Therefore, they are invertible for
0 < λ1 + λ2 < ‖w0‖1. Since

∥

∥[w0 − θ]+
∥

∥

1
=
∥

∥[w0 − θ2]+
∥

∥

1
, we must haveθ2 = θ. Recall

that the solution of Eq. (26) isw⋆ = min{w0, θ}, and the solution of the sequential update in-
duced by Eq. (24) and Eq. (25) ismin{min{w0, θ1}, θ2} = min{w0, θ2}. The programsP.1 and
P.2 therefore result in the same vectormin{w0, θ2} = min{w0, θ} and their induced updates are
equivalent.

We now examine the case when‖w0‖1 ≤ λ1 + λ2. If the 1-norm of w0 is also smaller than
λ1, ‖w0‖1 ≤ λ1, then the dual solution for the first step ofP.1 is α1 = w0, which makes
w1 = w0 − α1 = 0 and hencew2 = 0. The dual solution for the combined problem is clearly
α0 = w0; again,w⋆ = w0 − α0 = 0. We are thus left with the caseλ1 < ‖w0‖1 ≤ λ1 + λ2.
We straightforwardly get that the solution to Eq. (26) isw

⋆ = 0. We now prove that the iterated
solution obtained byP.1 results in the zero vector as well. First, consider the dual solution α1,
which is the minimizer of‖α − w0‖2 subject to‖α‖1 ≤ λ1. Sinceα1 = [w0 − θ1]+ for some
θ1 ≥ 0, we know that each component ofα1 is between zero and its corresponding component in
w0, therefore,‖w0 − α1‖1 = ‖w0‖1 − ‖α‖1 = ‖w0‖1 − λ1 ≤ λ2. The dual of the second step
of P.1 distills to the minimization1

2‖α − (w0 − α1)‖2 subject to‖α‖1 ≤ λ2. Since we showed
that‖w0 − α‖1 ≤ λ2, we getα2 = w0 − α1. This means thatθ2 = 0. Recall that the solution
of P.1 is min{w0, θ2}, which amounts to the zero vector whenθ2 = 0. We have thus showed that
both optimization problems result in the zero vector. This proves the equaivalence ofP.1 andP.2
for q = ∞.
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