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Abstract

Most of existing methods for DNA motif discovery consider only a single set of
sequences to find an over-represented motif. In contrast, we consider multiple
sets of sequences where we group sets associated with the same motif into a clus-
ter, assuming that each set involves a single motif. Clustering sets of sequences
yields clusters of coherent motifs, improving signal-to-noise ratio or enabling us
to identify multiple motifs. We present a probabilistic model for DNA motif dis-
covery where we identify multiple motifs through searching for patterns which
are shared across multiple sets of sequences. Our model infers cluster-indicating
latent variables and learns motifs simultaneously, where these two tasks interact
with each other. We show that our model can handle various motif discovery prob-
lems, depending on how to construct multiple sets of sequences. Experiments on
three different problems for discovering DNA motifs emphasize the useful behav-
ior and confirm the substantial gains over existing methods where only a single
set of sequences is considered.

1 Introduction

Discovering how DNA-binding proteins called transcription factors (TFs) regulate gene expression
programs in living cells is fundamental to understanding transcriptional regulatory networks con-
trolling development, cancer, and many human diseases. TFs that bind to specific cis-regulatory
elements in DNA sequences are essential for mediating this transcriptional control. The first step
toward deciphering this complex network is to identify functional binding sites of TFs referred to as
motifs.

We address the problem of discovering sequence motifs that are enriched in a given target set of
sequences, compared to a background model (or a set of background sequences). There have been
extensive research works on statistical modeling of this problem (see [1] for review), and recent
works have focused on improving the motif-finding performance by integrating additional informa-
tion into comparative [2] and discriminative motif discovery [3].

Despite the relative long history and the critical roles of motif discovery in bioinformatics, many
issues are still unsolved and controversial. First, the target set of sequences is assumed to have only
one motif, but this assumption is often incorrect. For example, a recent study examining the binding
specificities of 104 mouse TFs observed that nearly half of the TFs recognize multiple sequence
motifs [4]. Second, it is unclear how to select the target set on which over-represented motifs are
returned. The target set of sequences is often constructed from genome-wide binding location data
(ChIP-chip or ChIP-seq) or gene expression microarray data. However, there is no clear way to
partition the data into target and background sets in general. Third, a unified algorithm which is
applicable to diverse motif discovery problems is solely needed to provide a principled framework
for developing more complex models.
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Figure 1: Notation illustration.

These considerations motivate us to develop a generative probabilistic framework for learning multi-
ple motifs on multiple sets of sequences. One can view our framework as an extension of the classic
sequence models such as the two-component mixture (TCM) [5] and the zero or one occurrence per
sequence (ZOOPS) [6] models in which sequences are partitioned into two clusters, depending on
whether or not they contain a motif. In this paper, we make use of a finite mixture model to partition
the multiple sequence sets into clusters having distinct sequence motifs, which improves the motif-
finding performance over the classic models by enhancing signal-to-noise ratio of input sequences.
We also show how our algorithm can be applied into three different problems by simply changing
the way of constructing multiple sets from input sequences without any algorithmic modifications.

2 Problem formulation

We are given M sets of DNA sequences S = {S1, . . . ,SM} to be grouped according to the type of
motif involved with, in which each set is associated with only a single motif but multiple binding
sites are present in each sequence. A set of DNA sequences Sm = {sm,1, . . . , sm,Lm

} is a collection
of strings sm,i of length |sm,i| over the alphabet Σ = {A, C, G, T}. To allow for a variable number
of binding sites per sequence, we represent each sequence sm,i as a set of overlapping subsequences
sW

m,ij = (sm,ij , sm,i(j+1), . . . , sm,i(j+W−1)) of length W starting at position j ∈ Im,i, where sm,ij

denotes the letter at position j and Im,i = {1, . . . , |sm,i|−W +1}, as shown in Fig. 1. We introduce
a latent variable matrix zm,i ∈ R

2×|Im,i| in which the jth column vector zm,ij is a 2-dimensional
binary random vector [zm,ij1, zm,ij2]

> such that zm,ij = [0, 1]> if a binding site starts at position
j ∈ Im,i, otherwise, zm,ij = [1, 0]>. We also introduce K-dimensional binary random vectors
tm ∈ R

K ( tm,k ∈ {0, 1} and
∑

k tm,k = 1) for m = 1, . . . , M , which involve partitioning the
sequence sets S into K disjoint clusters, where sets in the same cluster are associated with the same
common motif.

For a motif model, we use a position-frequency matrix whose entries correspond to probability
distributions (over the alphabet Σ) of each position within a binding site. We denote by Θk ∈ R

W×4

the kth motif model of length W over Σ, where Θ>
k,w represents row w, each entry is non-negative,

Θk,wl ≥ 0 for ∀w, l, and
∑4

l=1 Θk,wl = 1 for ∀w. The background model θ0, which describes
frequencies over the alphabet within non-binding sites, is defined by a P th order Markov chain
(represented by a (P + 1)-dimensional conditional probability table).

Our goal is to construct a probabilistic model for DNA motif discovery where we identify multiple
motifs through searching for patterns which are shared across multiple sets of sequences. Our model
infers cluster-indicating latent variables (to find a good partition of S) and learns motifs (inferring
binding site-indicating latent variables zm,i) simultaneously, where these two tasks interact with
each other.
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Figure 2: Graphical representation of our mixture model for M sequence sets.

3 Mixture model for motif discovery

We assume that the distribution of S is modeled as a mixture of K components, where it is not
known in advance which mixture component underlies a particular set of sequences. We also as-
sume that the conditional distribution of the subsequence sW

m,ij given tm is modeled as a mixture of
two components, each of which corresponds to the motif and the background models, respectively.
Then, the joint distribution of observed sequence sets S and (unobserved) latent variables Z and T
conditioned on parameters Φ is written as:

p(S,Z , T |Φ) =

M
∏

m

p(tm|Φ)

Lm
∏

i=1

∏

j∈Im,i

p(sW
m,ij |zm,ij , tm, Φ)p(zm,ij |Φ), (1)

where Z = {zm,ij} and T = {tm}. The graphical model associated with (1) is shown in Fig. 2.

The generative process for subsequences sW
m,ij is described as follows. We first draw mixture

weights v = [v1, . . . , vK ]> (involving set clusters) from the Dirichlet distribution:

p(v|α) ∝

K
∏

k=1

v
αk
K

−1

k , (2)

where α = [α1, . . . , αK ]> are the hyperparameters. Given mixture weights, we choose the cluster-
indicator tm for Sm, according to the multinomial distribution p(tm|v) =

∏K
k=1 v

tm,k

k . The chosen
kth motif model Θk is drawn from the product of Dirichlet distributions:

p(Θk|β) =

W
∏

w=1

p(Θk,w|β) ∝

W
∏

w=1

4
∏

l=1

Θβl−1
k,wl , (3)

where β = [β1, . . . , β4]
> are the hyperparameters. The latent variables zm,ij indicating the starting

positions of binding sites are governed by the prior distribution specified by:

p(zm,ij |π) =
2

∏

r=1

πzm,ijr

r , (4)

where the mixture weights π = [π1, π2]
> satisfy π1, π2 ≥ 0 and π1 + π2 = 1. Finally, the

subsequences sW
m,ij are drawn from the following conditional distribution:

p(sW
m,ij |tm, zm,ij , {Θk}

K
k=1, θ0) = p(sW

m,ij |θ0)
zm,ij1

K
∏

k=1

(p(sW
m,ij |Θk)zm,ij2)tm,k , (5)

where

p(sW
m,ij |θ0) =

W
∏

w=1

4
∏

l=1

θ
δ(l,sm,i(j+w−1))

0l , p(sW
m,ij |Θk) =

W
∏

w=1

4
∏

l=1

Θ
δ(l,sm,i(j+w−1))

k,wl ,
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where δ(l, sm,i(j+w−1)) is an indicator function which equals 1 if sm,i(j+w−1) = l, and otherwise
0. Here, the background model is specified by the 0th-order Markov chain for notational simplicity.

Several assumptions simplify this generative model. First, the width W of the motif model and
the number K of set clusters are assumed to be known and fixed. Second, the mixture weights π
together with the background model θ0 are treated as parameters to be estimated. We assume the
hyperparameters α and β are set to fixed and known constants. The full set of parameters and hyper-
parameters will be denoted by Φ = {α, β, π, θ0}. Extension to double stranded DNA sequences is
obvious and omitted here due to the lack of space.

Our model builds upon the existing TCM model proposed by [5] where the EM algorithm is applied
to learn a motif on a single target set. This model actually generates subsequences instead of se-
quences themselves. An alternative model which explicitly generates sequences has been proposed
based on Gibbs sampling [7, 8]. Note that our model is reduced to the TCM model if K, the number
of set clusters, is set to one.

Our model shares some similarities with the recent Bayesian hierarchical model in [9] which also
uses a mixture model to cluster discovered motifs. The main difference is that they focus on cluster-
ing motifs already discovered, and in our formulation, we try to cluster sequence sets and discover
motifs simultaneously.

4 Inference by Gibbs sampling

We find the configurations of Z and T by maximizing the posterior distribution over latent variables:

Z∗, T ∗ = arg max
Z,T

p(Z , T |S, Φ). (6)

To this end, we use Gibbs sampling to find the posterior modes by drawing samples repeatedly from
the posterior distribution over Z and T . We will derive a Gibbs sampler for our generative model
in which the set mixture weights v and motif models {Θk}

K
k=1 are integrated out to improve the

convergence rate and the cost per iteration [8].

The critical quantities needed to implement the Gibbs sampler are the full conditional distributions
for Z and T . We first derive the relevant full conditional distribution over tm conditioned on the
set cluster assignments of all other sets, T\m, the latent positions Z , and the observed sets S. By
applying Bayes’ rule, Fig. 2 implies that this distribution factorizes as follows:

p(tm,k = 1|T\m,S,Z , Φ) ∝ p(tm,k = 1|T\m, α)p(Sm,Zm|T ,S\m,Z\m, Φ), (7)

where Z\m denotes the entries of Z other than Zm = {zm,i}
Lm

i=1, and S\m is similarly defined. The
first term represents the predictive distribution of tm given the other set cluster assignments T\m,
and is given by marginalizing the set mixture weights v:

p(tm,k = 1|T\m, α) =

∫

v

p(tm,k = 1|v)p(v|T\m, α)dv =
N−m

k + αk

K

M − 1 + αk

(8)

where N−m
k =

∑

n6=m δ(tn,k, 1). Note that N−m
k counts the number of sets currently assigned to

the kth set cluster excluding the mth set. The model’s Markov structure implies that the second term
of (7) depends on the current assignments T\m as follows:

p(Sm,Zm|tm,k = 1, T\m,S\m,Z\m, Φ)

=

∫

Θk

p(Sm,Zm|tm,k = 1, Θk, Φ)p(Θk|{Sn,Zn|tn,k = 1, n 6= m}, Φ)dΘk

=





Lm
∏

i=1

∏

j∈Im,i

p(zm,ij |π)
∏

j∈Im,i;zm,ij2=0

p(sW
m,ij |zm,ij2 = 0, θ0)





[

W
∏

w=1

{

Γ(
∑

l(N
−m
wl + βl))

Γ(
∑

l(Nwl + βl))

∏

l Γ(Nwl + βl)
∏

l Γ(N−m
wl + βl)

}

]

, (9)
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where Nwl = N−m
wl + Nm

wl and

N−m
wl =

∑

tn,k=1,n6=m

Ln
∑

i=1

∑

j∈In,i,zn,ij2=1

δ(sn,i(j+w−1), l)

Nm
wl =

Lm
∑

i=1

∑

j∈Im,i,zm,ij2=1

δ(sm,i(j+w−1), l).

Note that N−m
wl counts the number of letter l at position w within currently assigned binding sites

excluding the ones of the mth set. Similarly, Nm
wl denotes the number of letter l at position w within

bindings sites of the mth set.

We next derive the full conditional distribution of zm,ij given the remainder of the variables. Inte-
grating over the motif model Θk, we then have the following factorization:

p(zm,ij |Z\m,ij ,S, tm,k = 1, T\m, Φ) ∝

∫

Θk

∏

tn,k=1

p(Zn,Sn|Θk)p(Θk|β)dΘk

∝





∏

tn,k=1

Ln
∏

i=1

In,i
∏

j=1

p(zn,ij |π)

Ln
∏

i=1

∏

j∈In,i,zn,ij2=0

p(sW
n,ij |θ0)





[

W
∏

w=1

∏

l Γ(Nwl + βl)

Γ(
∑

l(Nwl + βl))

]

,(10)

where Z\m,ij denotes the entries of Z other than zm,ij . For the purpose of sampling, the ratio of the
posterior distribution of zm,ij is given by:

p(zm,ij2 = 1|Z\m,ij ,S, T , Φ)

p(zm,ij2 = 0|Z\m,ij ,S, T , Φ)
=

π2

π1p(sW
m,ij |θ0)

W
∏

w=1

∑4
l=1(N

−m,ij
wl + β)δ(sm,i(j+w−1), l)
∑4

l=1(N
−m,ij
wl + β)

,

where N
−m,ij
wl =

∑

tn,k=1

∑Ln

i=1

∑

j′∈In,i,j′ 6=j,zn,ij′2=1 δ(sn,i(j′+w−1), l). Note that N
−m,ij
wl de-

notes the number of letter l at position w within currently assigned binding sites other than zm,ij .

Combining (7) with (10) is sufficient to define the Gibbs sampler for our finite mixture model. To
provide a convergence measure, we derive the following objective function based on the log of the
posterior distribution:

log p(Z , T |S, Φ) ∝ log p(Z , T ,S|Φ)

∝

M
∑

m=1

Lm
∑

i=1

Im,i
∑

j=1

log p(zm,ij |π) +

M
∑

m=1

Lm
∑

i=1

∑

j∈Imi;zm,ij2=0

log p(sW
m,ij |θ0)

+

K
∑

k=1

W
∑

w=1

{

∑

l

log Γ(Nk
wl + βl) − log Γ(

∑

l

(Nk
wl + βl))

}

+

K
∑

k=1

log Γ(Nk +
αk

K
), (11)

where Nk =
∑

m δ(tm,k, 1) and Nk
wl =

∑

tm,k=1

∑Lm

i=1

∑

j∈Im,i,zm,ij2=1 δ(sm,i(j+w−1), l).

5 Results

We evaluated our motif-finding algorithm on the three different tasks: (1) filtering out undesirable
noisy sequences, (2) incorporating evolutionary conservation information, and (3) clustering DNA
sequences based on the learned motifs (Fig. 3). In the all experiments, we fixed the hyper-parameters
so that αk = 1 and βl = 0.5.

5.1 Data sets and evaluation criteria

We first examined the yeast ChIP-chip data published by [10] to investigate the effect of filtering out
noisy sequences from input sequences on identifying true binding sites. We compiled 156 sequence-
sets by choosing TFs having consensus motifs in the literature [11]. For each sequence-set, we
defined its sequences to be probe sequences that are bound with P -value ≤ 0.001.
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(a) Filtering out noisy se-
quences

(b) Evolutionary conservation (c) Motif-based clustering

Figure 3: Three different ways of constructing multiple sequence sets. Black rectangles: sequence
sets, Blue bars: sequences, Red dashed rectangles: set clusters, Red and green rectangles: motifs.

To apply our algorithm into the comparative motif discovery problem, we compiled orthologous
sequences for each probe sequence of the yeast ChIP-chip data based on the multiple alignments
of seven species of Saccharomyces (S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S.
bayanus, S. castelli, and S. kluyveri) [12]. In the experiments using the ChIP-chip data, the mo-
tif width was set to 8 and a fifth-order Markov chain estimated from the whole yeast intergenic
sequences was used to describe the background model. We fixed the mixture weights π so that
π2 = 0.001.

We next constructed the ChIP-seq data for human neuron-restrictive silence factor (NRSF) to deter-
mine whether our algorithm can be applied to partition DNA sequences into biologically meaningful
clusters [13]. The data consist of 200 sequence segments of length 100 from all peak sites with the
top 10% binding intensity (≥ 500 ChIP-seq reads), where most sequences have canonical NRSF-
binding sites. We also added 13 sequence segments extracted from peak sites (≥ 300 reads) known
to have noncanonical NRSF-binding sites, resulting in 213 sequences. In the experiment using the
ChIP-seq data, the motif width was set to 30 and a zero-order Markov chain estimated from the 213
sequence segments was used to describe the background model. We fixed the mixture weights π so
that π2 = 0.005.

In the experiments using the yeast ChIP-chip data, we used the inter-motif distance to measure the
quality of discovered motifs [10]. Specifically, an algorithm will be called successful on a sequence
set only if at least one of the position-frequency matrices constructed from the identified binding
sites is at a distance less than 0.25 from the literature consensus [14].

5.2 Filtering out noisy sequences

Selecting target sequences from the ChIP-chip measurements is largely left to users and this choice
is often unclear. Our strategy of constructing sequence-sets based on the binding P -value cutoff
would be exposed to danger of including many irrelevant sequences. In practice, the inclusion of
noisy sequences in the target set is a serious obstacle in the success of motif discovery. One possible
solution is to cluster input sequences into two smaller sets of target and noisy sequences based
on sequence similarity, and predict motifs from the clustered target sequences with the improved
signal-to-noise ratio. This two-step approach has been applied to only protein sequences because
DNA sequences do not share much similarity for effective clustering [15].

One alternative approach is to seek a better sequence representation based on motifs. To this end, we
constructed multiple sets by treating each sequence of a particular yeast ChIP-chip sequence-set as
one set (Fig. 3(a)). We examined the ability of our algorithm to find a correct motif with two different
numbers of clusters: K = 1 (without filtering) and K = 2 (clustering into two subsets of true and
noisy sequences). We ran each experiment five times with different initializations and reported
means with ±1 standard error. Figure 4 shows that the filtering approach (K = 2) outperforms the
baseline method (K = 1) in general, with the increasing value of the P -value cutoff. Note that the
ZOOPS or TCM models can also handle noisy sequences by modeling them with only a background
model [5, 6]. But we allow noisy sequences to have a decoy motif (randomly occurring sequence
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Figure 4: Effect of filtering out noisy sequences on the number of successfully identified motifs on
the yeast ChIP-chip data. K = 1: without filtering, K = 2: clustering into two subsets.

patterns or repeating elements) which is modeled with a motif model. Because our model can be
reduced to these classic models by setting K = 1, we concluded that noisy sequences were better
represented by our clustering approach than the previous ones using the background model (Fig. 4).

Two additional lines of evidence indicated that our filtering approach enhances the signal-to-noise
ratio of the target set. First, we compared the results of our filtering approach with that of other
baseline methods (AlignAce [16], MEME [6], MDScan [17], and PRIORITY-U [11]) on the same
yeast ChIP-chip data. For AlignAce, MEME and MDScan, we used the results reported by [14];
for PRIORITY-U , we used two different results reported by [14, 11] according to different sampling
strategy. We expected that our model would perform better than these four methods because they try
to remove noisy sequences based on the classic models. By comparing the results of Fig. 4 and Table
1, we see that our algorithm still performs better. Second, we also compared our model with DRIM
specifically designed to dynamically select the target set from the list of sorted sequences according
to the binding P -values of ChIP-chip measurements. For DRIM, we used the result reported by [18].
Because DRIM does not produce any motifs when they are not statistically enriched at the top of
the ranked list, we counted the number of successfully identified motifs on the sequence-sets where
DRIM generated significant motifs. Our method (number of successes is 16) was slightly better than
DRIM (number of successes is 15).

5.3 Detecting evolutionary conserved motifs

Comparative approach using evolutionary conservation information has been widely used to improve
the performance of motif-finding algorithms because functional TF binding sites are likely to be
conserved in orthologous sequences. To incorporate conservation information into our clustering
framework, orthologous sequences of each sequence of a particular yeast ChIP-chip sequence-set
were considered as one set and the number of clusters was set to 2 (Fig. 3(b)). The constructed sets
contain at most 7 sequences because we only used seven species of Saccharomyces. We used the
single result with the highest objective function value of (11) among five runs and compared it with
the results of five conservation-based motif finding algorithms on the same data set: MEME c [10],
PhyloCon [19], PhyMe [20], PhyloGibbs [21], PRIORITY-C [11]. For the five methods, we used
the results reported by [11]. We did not compare with discriminative methods which are known
to perform better at this data set because our model does not use negative sequences. Table 1
presents the motif-finding performance in terms of the number of correctly identified motifs for
each algorithm. We see that our algorithm greatly outperforms the four alignment-based methods
which rely on multiple or pair-wise alignments of orthologous sequences to search for motifs that are
conserved across the aligned blocks of orthologous sequences. In our opinion, it is because diverged
regions other than the short conserved binding sites may prevent a correct alignment. Moreover, our
algorithm performs somewhat better than PRIORITY-C, which is a recent alignment-free method.
We believe that it is because the signal-to-noise ratio of the input target set is enhanced by clustering.

5.4 Clustering DNA sequences based on motifs

To examine the ability of our algorithm to partition DNA sequences into biologically meaningful
clusters, we applied our algorithm to the NRSF ChIP-seq data which are assumed to have two
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Table 1: Comparison of the number of successfully identified motifs on the yeast ChIP-chip data
for different methods. NC: Non-conservation, EC: Evolutionary conservation, A: Alignment-based,
AF: Alignment-free, C: Clustering.

Method Description # of successes
AlignAce NC 16
MEME NC 35
MDScan NC 54
PRIORITY-U NC 46-58
MEME c EC + A 49
PhyloCon EC + A 19
PhyME EC + A 21
PhyloGibbs EC + A 54
PRIORITY-C EC + AF 69
This work EC + AF + C 75

(a) Canonical NRSF motif (b) Noncanonical NRSF motif

Figure 5: Sequence logo of discovered NRSF motifs.

different NRSF motifs (Fig. 3(c)). In this experiment, we have already known the number of clusters
(K = 2). We ran our algorithm five times with different initializations and reported the one with
the highest objective function value. Position-frequency matrices of two clusters are shown in Fig.
5. The two motifs correspond directly to the previously known motifs (canonical and non-canonical
NRSF motifs). However, other motif-finding algorithms such as MEME could not return the non-
canonical motif enriched in a very small set of sequences. These observations suggest that our
motif-driven clustering approach is effective at inferring latent clusters of DNA sequences and can
be used to find unexpected novel motifs.

6 Conclusions

In this paper, we have presented a generative probabilistic framework for DNA motif discovery us-
ing multiple sets of sequences where we cluster DNA sequences and learn motifs interactively. We
have presented a finite mixture model with two different types of latent variables, in which one is
associated with cluster-indicators and the other corresponds to motifs (transcription factor binding
sites). These two types of latent variables are inferred alternatively using multiple sets of sequences.
Our empirical results show that the proposed method can be applied to various motif discovery prob-
lems, depending on how to construct the multiple sets. In the future, we will explore several other
extensions. For example, it would be interesting to examine the possibility of learning the num-
ber of clusters from data based on Dirichlet process mixture models, or to extend our probabilistic
framework for discriminative motif discovery.
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