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Abstract

Kernel density estimation is the most widely-used practical method for accurate
nonparametric density estimation. However, long-standing worst-case theoretical
results showing that its performance worsens exponentially with the dimension
of the data have quashed its application to modern high-dimensional datasets for
decades. In practice, it has been recognized that often suchdata have a much
lower-dimensional intrinsic structure. We propose a smallmodification to ker-
nel density estimation for estimating probability densityfunctions on Riemannian
submanifolds of Euclidean space. Using ideas from Riemannian geometry, we
prove the consistency of this modified estimator and show that the convergence
rate is determined by the intrinsic dimension of the submanifold. We conclude
with empirical results demonstrating the behavior predicted by our theory.

1 Introduction: Density estimation and the curse of dimensionality

Kernel density estimation (KDE) [8] is one of the most popular methods for estimating the under-
lying probability density function (PDF) of a dataset. Roughly speaking, KDE consists of having
the data points “contribute” to the estimate at a given pointaccording to their distances from the
point. In the simplest multi-dimensional KDE [3], the estimatef̂m(y0) of the PDFf(y0) at a point
y0 ∈ R

N is given in terms of a sample{y1, . . . ,ym} as,

f̂m(y0) =
1

m

m
∑

i=1

1

hN
m

K

(

‖yi − y0‖

hm

)

, (1)

wherehm > 0, the bandwidth, is chosen to approach to zero at a suitable rate as the number
m of data points increases, andK : [0.∞) → [0,∞) is a kernel functionthat satisfies certain
properties such as boundedness. Various theorems exist on the different types of convergence of
the estimator to the correct result and the rates of convergence. The earliest result on the pointwise
convergence rate in the multivariable case seems to be givenin [3], where it is stated that under
certain conditions forf andK, assuminghm → 0 andmhm → ∞ asm → ∞, the mean squared
error in the estimatêf(y0) of the density at a point goes to zero with the rate,MSE[f̂m(y0)] =

E

[

(

f̂m(y0) − f(y0)
)2

]

= O
(

h4
m + 1

mhN
m

)

asm → ∞. If hm is chosen to be proportional to

m−1/(N+4), one gets,

MSE[f̂m(p)] = O

(

1

m4/(N+4)

)

, (2)

asm → ∞. This is an example of acurse of dimensionality; the convergence rate slows as the
dimensionalityN of the data set increases. In Table 4.2 of [12], Silverman demonstrates how the
sample size required for a given mean square error for the estimate of a multivariable normal distri-
bution increases with the dimensionality. The numbers lookas discouraging as the formula 2.
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One source of optimism towards various curses of dimensionality is the fact that although the data
for a given problem may have many features, in reality theintrinsic dimensionality of the “data
subspace” of the full feature space may be low. This may result in there being no curse at all, if
the performance of the method/algorithm under consideration can be shown to depend only on the
intrinsic dimensionality of the data. Alternatively, one may be able to avoid the curse by devising
ways to work with the low-dimensional data subspace by usingdimensional reduction techniques
on the data. One example of the former case is the results on nearest neighbor search [6, 2] which
indicate that the performance of certain nearest-neighborsearch algortihms is determined not by the
full dimensionality of the feature space, but only on the intrinsic dimensionality of the data subspace.

Riemannian manifolds. In this paper, we will assume that the data subspace is a Riemannian
manifold. Riemannian manifolds provide a generalization of the notion of a smooth surface inR3

to higher dimensions. As first clarified by Gauss in the two-dimensional case (and by Riemann in
the general case) it turns out thatintrinsic features of the geometry of a surface such as lengths of
its curves or intrinsic distances between its points, etc.,can be given in terms of the so-called metric
tensor1 g without referring to the particular way the the surface is embedded inR3. A space whose
geometry is defined in terms of a metric tensor is called a Riemannian manifold (for a rigorous
definition, see, e.g., [5, 7, 1]).

Previous work. In [9], Pelletier defines an estimator of a PDF on a RiemannianmanifoldM by
using the distances measured onM via its metric tensor, and obtains the same convergence rate
as in (2), withN being replaced by the dimensionality of the Riemannian manifold. Thus, if we
know that the data lives on a Riemannian manifoldM , the convergence rate of this estimator will
be determined by the dimensionality ofM , instead of the full dimensionality of the feature space
on which the data may have been originally sampled. While an interesting generalization of the
usual KDE, this approach assumes that the data manifoldM is known in advance, and that we have
access to certain geometric quantities related to this manifold such as intrinsic distances between
its points and the so-calledvolume density function. Thus, this Riemannian KDE cannot be used
directly in a case where the data lives on anunknownRiemannian submanifold ofRN . Certain tools
from existing nonlinear dimensionality reduction methodscould perhaps be utilized to estimate
the quantities needed in the estimator of [9], however, a more straightforward method that directly
estimates the density of the data as measured in the subspaceis desirable.

Other related works include [13], where the authors proposea submanifold density estimation
method that uses a kernel function with a variable covariance but do not present theorerical re-
sults, [4] where the author proposes a method for doing density estimation on a Riemannian man-
ifold by using the eigenfunctions of the Laplace-Beltrami operator, which, as in [9], assumes that
the manifold is known in advance, together with intricate geometric information pertaining to it, and
[10, 11], which discuss various issues related to statistics on a Riemannian manifold.

This paper. In this paper, we propose a direct way to estimate the densityof Euclidean data that
lives on a Riemannian submanifold ofR

N with known dimensionn < N . We prove the pointwise
consistency of the estimator, and prove bounds on its convergence rates given in terms of the intrinsic
dimension of the submanifold the data lives in. This is an example of the avoidance of the curse of
dimensionality in the manner mentioned above, by a method whose performance depends on the
intrinsic dimensionality of the data instead of the full dimensionality of the feature space. Our
method is practical in that it works with Euclidean distances onR

N . In particular, we do not assume
any knowledge of the quantities pertaining to the intrinsicgeometry of the underlying submanifold
such as its metric tensor, geodesic distances between its points, its volume form, etc.

2 The estimator and its convergence rate

Motivation. In this paper, we are concerned with the estimation of a PDF that lives on an (un-
known)n-dimensional Riemannian submanifoldM of R

N , whereN > n. Usual,N -dimensional
kernel density estimation would not work for this problem, since if interpreted as living onRN , the

1The metric tensor can be thought of as giving the “infinitesimal distance”ds between two points whose
coordinates differ by the infinitesimal amounts(dy1, . . . , dyN) asds2 =

P

ij gijdyidyj .
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underlying PDF would involve a “delta function” that vanishes when one moves away fromM , and
“becomes infinite” onM in order to have proper normalization. More formally, theN -dimensional
probability measure for such ann-dimensional PDF onM will have support only onM , will not be
absolutely continuous with respect to the Lebesgue measureonR

N , and will not have a probability
density function onRN . If one attempts to use the usual,N -dimensional KDE for data drawn from
such a probability measure, the estimator will “try to converge” to a singular PDF, one that is infinite
onM , zero outside.

In order to estimate the probability density function onM by using data given inRN , we pro-
pose a simple modification of usual KDE onR

N , namely, to use a kernel that is normalized for
n-dimensions instead ofN , while still using the Euclidean distances inR

N . The intuition behind
this approach is based on three facts: 1) For small distances, ann-dimensional Riemannian mani-
fold “looks like” R

n, and densities inRn should be estimated by ann-dimensional kernel, 2) For
points ofM that are close enough to each other, the intrinsic distancesas measured onM are close
to Euclidean distances as measured inR

N , and, 3) For small bandwidths, the main contribution to
the estimate at a point comes from data points that are nearby. Thus, as the number of data points
increases and the bandwidth is taken to be smaller and smaller, estimating the density by using a
kernel normalized forn-dimensions and distances as measured inR

N should give a result closer
and closer to the correct value.

We will next give the formal definition of the estimator motivated by these considerations, and state
our theorem on its asymptotics. As in the original work of Parzen [8], the proof that the estimator
is asymptotically unbiased consists of proving that as the bandwidth converges to zero, the kernel
function becomes a “delta function”. This result is also used in showing that with an appropriate
choice of vanishing rate for the bandwidth, the variance also vanishes asymptotically, hence the
estimator is pointwise consistent.

Statement of the theorem Let M be ann-dimensional, embedded, complete Riemannian sub-
manifold ofRN (n < N ) with an induced metricg and injectivity radiusrinj > 0.2 Let d(p, q) be
the length of a length-minimizing geodesic inM betweenp, q ∈ M , and letu(p, q) be the geodesic
(linear) distance betweenp andq as measured inRN . Note thatu(p, q) ≤ d(p, q). We will use the
notationup(q) = u(p, q) anddp(q) = d(p, q). We will denote the Riemannian volume measure on
M by V , and the volume form bydV .

Theorem 2.1. Let f : M → [0,∞) be a probability density function defined onM (so that the
related probability measure isfV ), andK : [0,∞) → [0,∞) be a continous function that sat-
isfies vanishes outside[0, 1), is differentiable with a bounded derivative in[0, 1), and satisfies,
∫

‖z‖≤1 K(‖z‖)dnz = 1. Assumef is differentiable to second order in a neighborhood ofp ∈ M ,

and for a sampleq1, . . . , qm of sizem drawn from the densityf , define an estimator̂fm(p) of f(p)
as,

f̂m(p) =
1

m

m
∑

j=1

1

hn
m

K

(

up(qj)

hm

)

(3)

wherehm > 0. If hm satisfieslimm→∞ hm = 0 and limm→∞ mhn
m = ∞, then, there exists

non-negative numbersm∗, Cb, andCV such that for allm > m∗ we have,

MSE
[

f̂m(p)
]

= E

[

(

f̂m(p) − f(p)
)2

]

< Cbh
4
m +

CV

mhn
m

. (4)

If hm is chosen to be proportional tom−1/(n+4), this gives,E
[

(fm(p) − f(p))2
]

= O
(

1
m4/(n+4)

)

asm → ∞.

Thus, the convergence rate of the estimator is given as in [3,9], with the dimensionality replaced
by the intrinsic dimensionn of M . The proof will follow from the two lemmas below on the
convergence rates of the bias and the variance.

2The injectivity radiusrinj of a Riemannian manifold is a distance such that all geodesicpieces (i.e., curves
with zero intrinsic acceleration) of length less thanrinj minimize the length between their endpoints. On a
complete Riemannian manifold, there exists a distance-minimizing geodesic between any given pair of points,
however, an arbitrary geodesic need not be distance minimizing. For example, any two non-antipodal points
on the sphere can be connected with two geodesics with different lengths, namely, the two pieces of the great
circle passing throught the points. For a detailed discussion of these issues, see, e.g., [1].
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3 Preliminary results

The following theorem, which is analogous to Theorem 1A in [8], tells that up to a constant, the
kernel becomes a “delta function” as the bandwidth gets smaller.

Theorem 3.1. Let K : [0,∞) → [0,∞) be a continuous function that vanishes outside[0, 1) and
is differentiable with a bounded derivative in[0, 1), and let ξ : M → R be a function that is
differentiable to second order in a neighborhood ofp ∈ M . Let

ξh(p) =
1

hn

∫

M

K

(

up(q)

h

)

ξ(q) dV (q) , (5)

whereh > 0 anddV (q) denotes the Riemannian volume form onM at pointq. Then, ash → 0,

ξh(p) − ξ(p)

∫

Rn

K(‖z‖)dnz = O(h2) , (6)

wherez = (z1, . . . , zn) denotes the Cartesian coordinates onR
n anddnz = dz1 . . . dzn denotes

the volume form onRn. In particular, limh→0 ξh(p) = ξ(p)
∫

Rn K(‖z‖)dnz.

Before proving this theorem, we prove some results on the relation betweenup(q) anddp(q).

Lemma 3.1. There existδup > 0 andMup > 0 such that for allq with dp(q) ≤ δup , we have,

dp(q) ≥ up(q) ≥ dp(q) − Mup [dp(q)]
3

. (7)

In particular, limq→p
up(q)
dp(q) = 1.

Proof. Let cv0(s) be a geodesic inM parametrized by arclengths, with c(0) = p and initial ve-

locity
dcv0

ds

∣

∣

s=0
= v0. Whens < rinj , s is equal todp(cv0(s)) [7, 1]. Now let xv0(s) be the

representation ofcv0(s) in R
N in terms of Cartesian coordinates with the origin atp. We have

up(cv0(s)) = ‖xv0(s)‖ and ‖x′
v0

(s)‖ = 1, which gives3 x′
v0

(s) · x′′
v0

(s) = 0. Using these

we get,
dup(cv0 (s))

ds

∣

∣

∣

s=0
= 1 , and

d2up(cv0(s))

ds2

∣

∣

∣

s=0
= 0. Let M3 ≥ 0 be an upper bound on

the absolute value of the third derivative ofup(cv0(s)) for all s ≤ rinj and all unit lengthv0:
∣

∣

∣

d3up(cv0(s))

ds3

∣

∣

∣
≤ M3. Taylor’s theorem givesup(cv0(s)) = s + Rv0(s) where|Rv0(s)| ≤ M3

s3

3! .

Thus, (7) holds withMup = M3

3! , for all r < rinj . For later convenience, instead ofδu = rinj ,
we will pick δup as follows. The polynomialr − Mupr3 is monotonically increasing in the interval
0 ≤ r ≤ 1/

√

3Mup . We let δup = min{rinj , 1/
√

Mup}, so thatr − Mupr3 is ensured to be
monotonic for0 ≤ r ≤ δup .

Definition 3.2. For 0 ≤ r1 < r2, let,

Hp(r1, r2) = inf{up(q) : r1 ≤ dp(q) < r2} , (8)

Hp(r) = Hp(r,∞) = inf{up(q) : r1 ≤ dp(q)} , (9)

i.e.,Hp(r1, r2) is the smallestu-distance fromp among all points that have ad-distance betweenr1

andr2.

SinceM is assumed to be an embedded submanifold, we haveHp(r) > 0 for all r > 0. In the
below, we will assume that all radii are smaller thanrinj , in particular, a set of the form{q : r1 ≤
dp(q) < r2} will be assumed to be non-empty and so, due to the completeness of M , to contain a
pointq ∈ M such thatdp(q) = r1. Note that,

Hp(r1) = min{H(r1, r2), H(r2)} . (10)

Lemma 3.2. Hp(r) is a non-decreasing, non-negative function, and there exist δHp > 0 andMHp ≥

0 such that,r ≥ Hp(r) ≥ r − MHpr3 , for all r < δHp . In particular, limr→0
Hp(r)

r = 1.

3Primes denote differentiation with respect to s.
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Proof. Hp(r) is clearly non-decreasing andHp(r) ≤ r follows from up(q) ≤ dp(q) and the fact
that there exists at least one pointq with dp(q) = r in the set{q : r ≤ dp(q)}

Let δHp = Hp(δup) whereδup is as in the proof of Lemma 3.1 and letr < δHp . Sincer < δHp =
Hp(δup) ≤ δup , by Lemma 3.1 we have,

r ≥ up(r) ≥ r − Mupr3 , (11)

for someMup > 0. Now, sincer andr−Mupr3 are both monotonic for0 ≤ r ≤ δup , we have (see
figure)

r ≥ Hp(r, δup) ≥ r − Mupr3 . (12)

In particular,H(r, δup) ≤ r < δHp = Hp(δup), i.e, H(r, δup) < Hp(δup). Using (10) this
gives,Hp(r) = Hp(r, δup). Combining this with (12), we getr ≥ Hp(r) ≥ r − Mupr3 for all
r < δHp .

Next we show that for all small enoughh, there exists some radiusRp(h) such that for all pointsq
with adp(q) ≥ Rp(h), we haveup(q) ≥ h. Rp(h) will roughly be the inverse function ofHp(r).

Lemma 3.3. For anyh < Hp(rinj), let Rp(h) = sup{r : Hp(r) ≤ h}. Then,up(q) ≥ h for all
q with dp(q) ≥ Rp(h) and there existδRp > 0 andMRp > 0 such that for allh ≤ δRp , Rp(h)
satisfies,

h ≤ Rp(h) ≤ h + MRph3 . (13)

In particular, limh→0
Rp(h)

h = 1.

Proof. Thatup(q) ≥ h whendq(q) ≥ Rp(h) follows from the definitions. In order to show (13), we
will use Lemma 3.2. Letα(r) = r − MHpr3, whereMHp is as in Lemma 3.2. Then,α(r) is one-
to-one and continuous in the interval0 ≤ r ≤ δHp ≤ δup . Let β = α−1 be the inverse function of
α in this interval. From the definition ofRp(h) and Lemma 3.2, it follows thath ≤ Rp(h) ≤ β(h)
for all h ≤ α(δHp). Now, β(0) = 0, β′(0) = 1, β′′(0) = 0, so by Taylor’s theorem and the fact
that the third derivative ofβ is bounded in a neighborhood of 0, there existsδg andMRp such that
β(h) ≤ h + MRph

3 for all h ≤ δg. Thus,

h ≤ Rp(h) ≤ h + MRph3, (14)

for all h ≤ δR whereδR = min{α(δHp), δg}.

Proof of Theorem 3.1.We will begin by proving that for small enoughh, there is no contribution to
the integral in the definition ofξh(p) (see (5)) from outside the coordinate patch covered by normal
coordinates.4

Let h0 > 0 be such thatRp(h0) < rinj (such anh0 exists sincelimh→0 Rp(h) = 0). For any
h ≤ h0, all pointsq with dp(q) > rinj will satisfy up(q) > h. This means ifh is small enough,

K(
up(q)

h ) = 0 for all points outside the injectivity radius and we can perform the integral in (5)
solely in the patch of normal coordinates atp.

For normal coordinatesy = (y1, . . . , yn) around the pointp with y(p) = 0, we havedp(q) =
‖y(q)‖ [7, 1]. With slight abuse of notation, we will writeup(y(q)) = up(q), ξ(y(q)) = ξ(q) and
g(q) = g(y(q)), whereg is the metric tensor ofM .

SinceK(
up(q)

h ) = 0 for all q with dp(q) > Rp(h), we have,

ξh(p) =
1

hn

∫

‖y‖≤Rp(h)

K

(

up(y)

h

)

ξ(y)
√

g(y)dy1 . . . dyn , (15)

4Normal coordinates at a pointp in a Riemannian manifold are a close approximation to Cartesian coordi-
nates, in the sense that the components of the metric have vanishing first derivatives atp, andgij(p) = δij [1].
Normal coordinates can be defined in a “geodesic ball” of radius less thanrinj .
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whereg denotes the determinant ofg as calculated in normal coordinates. Changing the variableof
integration toz = y/h, we get,

ξh(p) − ξ(p)

∫

K(‖z‖)dnz =

∫

‖z‖≤Rp(h)/h

K

(

up(zh)

h

)

ξ(zh)
√

g(zh)dnz − ξ(0)

∫

‖z‖≤1

K(‖z‖)dnz

=

∫

‖z‖≤1

K

(

up(zh)

h

)

ξ(zh)
(

√

g(zh) − 1
)

dnz +

∫

‖z‖≤1

ξ(zh)

(

K

(

up(zh)

h

)

− K(‖z‖)

)

dnz +

∫

‖z‖≤1

K(‖z‖) (ξ(zh) − ξ(0)) dnz +

∫

1<‖z‖≤Rp(h)/h

K

(

up(zh)

h

)

ξ(zh)
√

g(zh)dnz .

Thus,
∣

∣

∣

∣

ξh(p) − ξ(p)

∫

K (‖z‖) dnz

∣

∣

∣

∣

≤ (16)

sup
t∈R

K(t) . sup
‖z‖≤1

|ξ(zh)| . sup
‖z‖≤1

∣

∣

∣

√

g(zh) − 1
∣

∣

∣
.

∫

‖z‖≤1

dnz + (17)

sup
‖z‖≤1

|ξ(zh)| . sup
‖z‖≤1

∣

∣

∣

∣

K(
up(zh)

h
) − K(‖z‖)

∣

∣

∣

∣

.

∫

‖z‖≤1

dnz + (18)

∣

∣

∣

∣

∣

∫

‖z‖≤1

K(‖z‖)(ξ(zh) − ξ(0))dnz

∣

∣

∣

∣

∣

+ (19)

sup
t∈R

K(t) . sup
1<‖z‖≤Rp(h)/h

√

g(zh) . sup
1<‖z‖≤Rp(h)/h

|ξ(zh)| .

∫

1<‖z‖≤Rp(h)/h

dnz . (20)

Lettingh → 0, the terms (17)-(20) approach zero at the following rates:

(17): K(t) is bounded andξ(y) is continuous aty = 0, so the first two terms can be bounded
by constants ash → 0. In normal coordinatesy, gij(y) = δij + O(‖y‖2) as ‖y‖ → 0, so,

sup‖z‖≤1

∣

∣

∣

√

g(zh) − 1
∣

∣

∣
= O(h2) ash → 0.

(18): SinceK is assumed to be differentiable with a bounded derivative in[0, 1), we getK(b) −

K(a) = O(b − a) asb → a. By Lemma 3.1 we haveup(zh)
h − ‖z‖ = O(h2) ash → 0. Thus,

K
(

up(zh)
h

)

− K(‖z‖) = O(h2) ash → 0.

(19): Sinceξ(y) is assumed to have partial derivatives up to second order in aneighborhood of
y(p) = 0, for ‖z‖ ≤ 1, Taylor’s theorem gives,

ξ(zh) = ξ(0) + h
n

∑

i=1

zi ∂ξ(y)

∂yi

∣

∣

∣

y=0
+ O(h2) (21)

ash → 0. Since
∫

‖z‖≤1
zK(‖z‖)dnz = 0, we get

∣

∣

∣

∫

‖z‖≤1
K(‖z‖)(ξ(zh) − ξ(0))dnz

∣

∣

∣
= O(h2) as

h → 0.

(20): The first three terms can be bounded by constants. By Lemma 3.3,Rp(h) = h + O(h3) as
h → 0. A spherical shell1 < ‖z‖ ≤ 1 + ǫ has volumeO(ǫ) asǫ → 0+. Thus, the volume of
1 < ‖z‖ ≤ Rp(h)/h is O(Rp(h)/h − 1) = O(h2) ash → 0.

Thus, the sum of the terms (17-20), isO(h2) ash → 0, as claimed in Theorem 3.1.
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4 Bias, variance and mean squared error

Let M , f , f̂m, K, p be as in Theorem 2.1 and assumehm → 0 asm → ∞.

Lemma 4.1. Bias
[

f̂m(p)
]

= O(h2
m), asm → ∞.

Proof. We haveBias[fm(p)] = Bias
[

1
hm

K
(

up(q)
h

)]

, so recalling
∫

Rn K(‖z‖)dnz = 1, the lemma

follows from Theorem 3.1 withξ replaced withf .

Lemma 4.2. If in addition to hm → 0, we havemhn
m → ∞ as m → ∞, then,Var[fm(p)] =

O
(

1
mhn

m

)

, asm → ∞.

Proof.

Var[fm(p)] =
1

m
Var

[

1

hn
m

K

(

up(q)

hm

)]

(22)

(23)

Now,

Var

[

1

hn
m

K

(

up(q)

hm

)]

= E

[

1

h2n
m

K2

(

up(q)

hm

)]

−

(

E

[

1

hn
m

K

(

up(q)

hm

)])2

, (24)

and,

E

[

1

h2n
m

K2

(

up(q)

hm

)]

=
1

hn
m

∫

M

f(q)
1

hn
m

K2

(

up(q)

hm

)

dV (q) . (25)

By Theorem 3.1, the integral in (25) converges tof(p)
∫

K2(‖z‖)dnz, so, the right hand side of

(25) is O
(

1
hn

m

)

asm → ∞. By Lemma 4.1 we have,
(

E
[

1
hn

m
K

(

up(q)
hm

)])2

→ f2(p). Thus,

Var[f̂m(p)] = O
(

1
mhn

m

)

asm → ∞.

Proof of Theorem 2.1 Finally, sinceMSE
[

f̂m(p)
]

= Bias2[f̂m(p)] + Var[f̂m(p)], the theorem

follows from Lemma 4.1 and 4.2.

5 Experiments and discussion

We have empirically tested the estimator (3) on two datasets: A unit normal distribution mapped
onto a piece of a spiral in the plane, so thatn = 1 andN = 2, and a uniform distribution on the unit
discx2 +y2 ≤ 1 mapped onto the unit hemisphere by(x, y) → (x, y, 1−

√

x2 + y2), so thatn = 2

andN = 3. We picked the bandwidths to be proportional tom−1/(n+4) wherem is the number of
data points. We performed live-one-out estimates of the density on the data points, and obtained the
MSE for a range ofms. See Figure 5.

6 Conclusion and future work

We have proposed a small modification of the usual KDE in orderto estimate the density of data
that lives on ann-dimensional submanifold ofRN , and proved that the rate of convergence of the
estimator is determined by the intrinsic dimensionn. This shows that the curse of dimensionality in
KDE can be overcome for data with low intrinsic dimension. Our method assumes that the intrinsic
dimensionalityn is given, so it has to be supplemented with an estimator of thedimension. We
have assumed various smoothness properties for the submanifold M , the densityf , and the kernel
K. We find it likely that our estimator or slight modifications of it will be consistent under weaker
requirements. Such a relaxation of requirements would havepractical consequences, since it is
unlikely that a generic data set lives on a smooth Riemannianmanifold.
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Figure 1: Mean squared error as a function of the number of data points for the spiral data (left) and the
hemisphere data. In each case, we fit a curve of the formMSE(m) = amb, which gaveb = −0.80 for the
spiral andb = −0.69 for the hemisphere. Theorem 2.1 bounds the MSE byCm−4/(n+4), which gives the
exponent as−0.80 for the spiral and−0.67 for the hemisphere.
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