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Abstract

We present a sequence of unsupervised, nonparametriciBayesdels for clus-
tering complex linguistic objects. In this approach, wesidar a potentially infi-
nite number of features and categorical outcomes. We aealitlhese models for
the task of within- and cross-document event coreferenderorcorpora. All the
models we investigated show significant improvements wioempared against an
existing baseline for this task.

1 Introduction

In Natural Language Processing (NLP), the task of eventfemrace has numerous applications,
including question answering, multi-document summaiérgtand information extraction. Two
event mentions areoreferentialf they share the same participants and spatio-temporahgliogs.
Moreover, two event mentions aigenticalif they have the same causes and effects. For example,
the three documents listed in Table 1 contains four mentbitentical events but only therrested
apprehendedandarrest mentions from the documents 1 and 2 are coreferential. Tihefsgitions
were used in the tasks of Topic Detection and Tracking (T@3$)eported in [24].

Previous approaches to event coreference resolution 2] thhee same lexeme or synonymy of the
verb describing the event to decide coreference. Evenferamce was also tried by using the
semantic types of an ontology [17]. However, the features iy these approaches are hard to select
and require the design of domain specific constraints. Toesddhis problems, we have explored
a sequence of unsupervised, nonparametric Bayesian ntbdekre used to probabilistically infer
coreference clusters of event mentions from a collectionrdébeled documents. Our approach
is motivated by the recent success of unsupervised appgedoh entity coreference resolution
[16, 22, 25] and by the advantages of using a large amounttafalano cost.

One model was inspired by the fully generative Bayesian rpamosed by Haghighi and Klein
[16] (henceforth, H&K). However, to employ the H&K’s modedrf tasks that require clustering
objects with rich linguistic features (such as event cariee resolution), or to extend this model in
order to enclose additional observable properties is daniigihg task [22, 25]. In order to counter
this limitation, we make a conditional independence assiompetween the observable features
and propose a generalized framework (Section 3) that istatdasily incorporate new features.

During the process of learning the model described in Se&jdt was observed that a large amount
of time was required to incorporate and tune new featureis.|&hd us to the challenge of creating a
framework which considers an unbounded number of featuheserthe most relevant are selected
automatically. To accomplish this new goal, we propose teeehapproaches (Section 4). The
first incorporates #Markov Indian Buffet Proces@nIBP) [30] into aHierarchical Dirichlet Process
(HDP) [28]. The second uses aémfinite Hidden Markov Mode(iHMM) [5] coupled to aninfinite
Factorial Hidden Markov ModeiFHMM) [30].

In this paper, we focus on event coreference resolutiomghadaptations for event identity resolu-
tion can be easily made. We evaluated the models on the ACE&@ht corpus [18] and on a new
annotated corpus encoding within- and cross-document eeeeference information (Section 5).
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Document 1: San Diego Chargers receiver Vincent Jackson amssted on suspicion of drunk driving d
Tuesday morning, five days before a key NFL playoff game.

Police apprehended Jackson in San Diego at 2:30 a.m. and booked him for the misdeaur before his
release.

Document 2: Despite hisarrest on suspicion of driving under the influence yesterday, Cérargeceive
Vincent Jackson will play in Sunday’s AFC divisional pldygEme at Pittsburgh.

Document 3: In another anti-piracy operation, Navy warship on Saturdegulsed an attack on a merchant
vessel in the Gulf of Aden am@bbed 23 Somali and Yemeni sea brigands.

Table 1:Examples of coreferential and identical events.

2 Event Coreference Resolution

Models for solving event coreference and event identitylead to the generation of ad-hoc event
hierarchies from text. A sample of a hierarchy capturingetening and identical events, including
those from the example presented in Section 1, is illustris&igure 1.

generic
events arrest
Event properties: Event properties:
_- | Suspect:  Vincent Jackson _- | Suspect: sea brigands
v e Authorities:police v e Authorities:Navy warship

] i Time: uesday e Time: Saturda)

events 4@ Location: San Diego @@ Location: Gulf of Aden
event v v v v

mentions ... arrested ... apprehenda arrestﬁ. ... nabbed ...

Document 1 Document 2 Document 3
Figure 1:A portion of the event hierarchy.

First, we introduce some basic notatibriNext, to cluster the mentions that share common event
properties (as shown in Figure 1), we briefly describe thgulistic features of event mentions.

2.1 Notation

As input for our models, we consider a collection/aflocuments, each documeritaving.J; event
mentions. Each event mention is characterized.bfeature typesrT, and each feature type is
represented by a finite number fefature valuesfv. Therefore, we can represent the observable
properties of an event mentiosy, as a vector of pairéFT; : fv1y), ..., FTL: fur:)), where each
feature value indexranges in the feature value space associated with a feghee t

2.2 Linguistic Features
We consider the following set of features associated to antawentior?

Lexical Features(LF) To capture the lexical context of an event mention, we ektracfollowing
features: the head word of the mentiony), the lemma of theiw (HL), lemmas of left and right
words of the mentionHL ,RHL), and lemmas of left and right mentions4g,RHE).

Class Features (CF) These features aim to classify mentions into several typedasses: the
mentionHW’s part-of-speechr09), the word class of thetw (Hwc), which can take one of the
following values(verb, noun adjective other), and the event class of the menti@&cy]. To extract
the event class associated to every event mention, we eptpthg event identifier described in [6].

WordNet Features (WF) We build three types of clusters over all the words from Wazt [@]
and use them as features for the mentiwm. First cluster type associates an unigudeo each
(wordHWC) pair (WNw). The second cluster type uses the transitive closure o$yhenymous
relations to group words from WordNew({s). Finally, the third cluster type considers as grouping
criteria the category from WordNet lexicographer’s fileattts associated to each wondNL). For
cases when a new word does not belong to any of these Wordidged, we create a new cluster
with a newid for each of the three cluster types.

Semantic Features (SF) To extract features that characterize participants andesties of event
mentions, we use s semantic parser [8] trained on PropB&)KgB] and FrameNet(FN) [4] cor-
pora. (For instance, for th@pprehendednention from our examplelacksonis the feature value

For consistency, we try to preserve the notation of the waiginodels.
2In this subsection and the following section, the featunmtis used in context of a feature type.



for A0 PB argumenitand thesuspecTframe elementfEAQ) of the ARREST frame.) Another se-
mantic feature is the semantic franrg] that is evoked by an event mention. (For instance, all the
emphasized mentions from our example evokeRrESTframe from FN.)

Feature Combinations (FC) We also explore various combinations of features presemitede.
Examples includeiw+pPOS HL+FR, FE+AL, etc.

3 Finite Feature M odds

In this section, we present a sequence of HDP mixture modes®fving event coreference. For this
type of approach, Birichlet Proces¢DP) [10] is associated with each document, and each mixture
component, which in our case corresponds to an event, iedleross documents. To describe
these models, we considBrthe set of indicator random variables for indices of evepitshe set

of parameters associated to an evgnp a notation for all model parameters, aKda notation for

all random variables that represent observable features.

Given a document collection annotated with event mentithresgoal is to find the best assignment
of event indicesZ*, which maximize the posterior probabilif}(Z | X). In a Bayesian approach,
this probability is computed by integrating out all modetgraeters:

P(ZIX) = / P(Z. |X)do = / P(ZIX, 6)P(6|X)dé

In order to describe our modifications, we first revisit a basbdel from the set of models described
in H&K'’s paper.

3.1 The OneFeature Model

The one feature model, HQP, constitutes the simplest representation of an HDP modaethis
model, which is depicted graphically in Figure 2(a), theayliable components are characterized
by only one feature. The distribution over events assotitteeach documem is generated by a
Dirichlet process with a concentration parameter 0. Since this setting enables a clustering of
event mentions at the document level, it is desirable thah&svare shared across documents and
the number of event& is inferred from data. To ensure this flexibility, a globalnparametric
DP prior with a hyperparameterand a global base measuiiecan be considered fg# [28]. The
global distribution drawn from this DP prior, denoted@sin Figure 2(a), encodes the event mixing
weights. Thus, same global events are used for each documérgach event has a document
specific distributiorg; that is drawn from a DP prior centered 8y.

To infer the true posterior probability d?(Z|X), we follow [28] in using a Gibbs sampling algo-
rithm [12] based on the direct assignment sampling schemthis sampling scheme, th®and¢
parameters are integrated out analytically. The formulaémpling an event index for mentign
from document, Z; ;, is given by?

P(Z;; | Z7% HL) < P(Z;; | Z=")P(HL; ; | Z, HL™"J)
whereH L; ; is the head lemma of the event mentjofiom the document

First, in the generative process of an event mention, anté@veex » is sampled by using a mecha-
nism that facilitates sampling from a prior for infinite mixé models called the Chinese Restaurant
Franchise (CRF) representation [28]:

o —ij Oéﬁg, if 2= Znew
P(Zij=2|Z7",[) { n. +afZ, otherwise

Here,n. is the number of event mentions with the eventindex, .., is a new eventindex not used
already inZ—*7, (35 are the global mixing proportions associated to fieevents, ang3j is the

weight for the unknown mixture component.

Then, to generate the mention head lemma (in this madet, (HL)), the event is associated with
a multinomial emission distribution over tha. feature values having the parameters= (o).
We assume that this emission distribution is drawn from arsgiric Dirichlet distribution with
concentratiom\g .

a0 annotates in PB a specific type of semantic role which reptesheAGENT, the DOER, or theACTOR
of a specific event. Another PB argumentais, which plays the role of theATIENT, the THEME, or the
EXPERIENCEROf an event.

47" represents a notation f@ — {Z; ;}.
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Figure 2: Graphical representation of four HDP models. Each nodesspaonds to a random variable. In

particular, shaded nodes denotes observable variableb. rEetangle captures the replication of the structure

it contains. The number of replications is indicated in tlo¢tdm-right corner of the rectangle. The model

depicted in (a) is an HDP model using one feature; the modg)iemploysHL andFR features; (c) illustrates

a flat representation of a limited number of features in ageized framework (henceforth, HDR,;); and (d)

captures a simple example of structured network topologihmfe feature variables (henceforth, HRR..+).

The dependencies involving parametgrandd in models (b), (c), and (d) are omitted for clarity.
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P(HL; ;= hl | Z,HL™") & npy. + Ani
whereH L; ; is the head lemma of mentighfrom document, andny, . is the number of times

the feature valuél has been associated with the event indéx (Z, HL~"7). We also apply the
Lidstone’s smoothing method to this distribution.

3.2 Adding MoreFeatures

A model in which observable components are representedmynbne feature has the tendency to
cluster these components based on their feature value. dresglthis limitation, H&K proposed
a more complex model that is strictly customized for entityeference resolution. On the other
hand, event coreference involves clustering complex t¢bjeltaracterized by richer features than
entity coreference (or topic detection), and therefore ddsirable to extend the HpPmodel with

a generalized model where additional features can be éasdyporated.

To facilitate this extension, we assume that feature vlesadire conditionally independent givEn
This assumption considerably reduces the complexity ofprding P(Z | X). For example, if we
want to incorporate another feature (efgR) in the previous model, the formula becomes:

P(Z,;|HL,FR) x P(Z; ;)P(HL; ;,FR, ;|Z) = P(Z,; ;)P(HL; ;|Z)P(FR; ;|Z)

In this formula, we omit the conditioning componentfHL, andFR for clarity. The graphical
representation corresponding to this model is illustratdgigure 2(b). In general, iX consists of
L feature variables, the inference formula for the Gibbs danip defined as:

P(Z;;|X) < P(Zi;) [[ P(FT.;|2)
FTeX
The graphical model for this general setting is depictedigufe 2(c). Drawing an analogly, the
r

graphical representation involving feature variables Andriables resembles the graphical repre-
sentation of a Naive Bayes classifier.

When dependencies between feature variables exist fea@uricase, frame elements are dependent
of the semantic frames that define them, and frames are depeofithe words that evoke them),
various global distributions are involved for computi®iZ | X). For instance, for the model
depicted in Figure 2(d) the posterior probability is given b

P(Zi;)P(FR; ;|HL;;,0) [[ P(FT:,|Z)
FTeX

In this model,P(FR; ; | HL; ;,0) is a global distribution parameterized I8y and the feature
variables considered ad¢= (HL, POS, FR).



For all these extended models, we compute the prior andHikedl factors as described in the one
feature model. Also, following H&K, in the inference meclgmn we assign soft counts for missing
features (e.g., unspecified PB argument).

4 Unbounded Feature Models

First, we present a generative model calledifekov Indian Buffet ProcessnIBP) that provides a
mechanism in which each object can be represented by a spdoset of a potentially unbounded set
of latent features [15, 14, 36]Then, to overcome the limitations regarding the number oftuné
components and the number of features associated withtepyee combine this mechanism with
an HDP model to form an mIBP-HDP hybrid. Finally, to accoumtemporal dependencies, we
employ an mIBP extension, called thainite Factorial Hidden Markov ModgiFHMM) [30], in
combination with arinfinite Hidden Markov Mode[iHMM) to form the iIFHMM-iHMM model.

4.1 TheMarkov Indian Buffet Process

As described in [30], the mIBP defines a distribution overaimaunded set of binary Markov chains,
where each chain can be associated to a binary latent fehirevolves over time according to
Markov dynamics. Specifically, if we denote By the total number of feature chains and By
the number of observable components (event mentions), BE khefines a probability distribution
over a binary matrid¥ with 7' rows, which correspond to observations, and an unboundateu
of columns ({ — o), which correspond to features. An observatigrcontains a subset from
the unbounded set of featurgg!, f2, ..., fM} thatis represented in the matrix by a binary vector
F.=(F! F?,...,FM), whereF; =1 indicates thayf’ is associated tg;.

Therefore,F decomposes the observations and represents them as fie&tiors, which can then
be associated to hidden variables in an iFHMM as depictedbiaré 3(a). The transition matrix of
a binary Markov chain associated to a featfifeis defined as

(m) _ 1_am A
W= (1—bm bm)

Wherer(;”) = P(F{?, =j| F/™ =1i), the parameters,, ~ Beta(a’/M, 1) andb,,, ~ Beta(v',d’),
and the initial statg’j* = 0. In the generative process, the hidden variable of feaftirdor an

. . _gm Fm
objecty;, F{"™ ~ Bernoulh(a,ln o).

To compute the probability of the feature matkg, in which the parameteesandb are integrated
out analytically, we use the counting variabté$, %!, ¢l andc!! to record thed — 0, 0 — 1,
1—0, andl — 1 transitionsf™ has made in the binary chain. The stochastic process that derives
the probability distribution in terms of these variableslefined as follows. The first component
samples a number ¢foisson(«’) features. In general, depending on the value that was sdriple
the previous stept (— 1), a featuref™ is sampled for theé‘* component according to the following
probabilities:

et +¢
vy 40 4 el 4 ekl

COO

P(F = 1| F[,=0) = <

P(th: 1|Ftﬂ11:1) =

Thett" component then repeats the same mechanism for samplingxhéeatures until it finishes
the current number of sampled features After all features are sampled for th& component,

a number ofPoisson(a’/t) new features are assigned for this componentiahdets incremented
accordingly.

4.2 ThemlIBP-HDP Model

One direct application of the mIBP is to integrate it into HiBP models proposed in Section 3. In
this way, the new nonparametric extension will have the fisnaf capturing uncertainty regarding
the number of mixture components that are characterizegbyeamtially infinite number of features.
Since one observable componentis associated with an udbdwountable set of features, we have
to provide a mechanism in which only a finite set of featurdé nepresent the component in the
HDP inference process.

®In this section, a feature is represented by a (featurefsquere value) pair.
®Technical details for computing this probability are désed in [30].
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(b)
Figure 3:(a) The Infinite Factorial Hidden Markov Model. (b) The iIFHMMMM model. (M— o)

The idea behind this mechanism is to usige sampling [21] in order to derive a finite set of
features fony,. Letting ¢,,, be the number of times featuf& was sampled in the mIBP, and an
auxiliary variable fory, such that; ~ Uniform(1, max{q,, | F{ =1}), we define the finite feature
setB; for the observation; as:

By ={f" | F{" =1\ qm > v}

The finiteness of this feature set is based on the obsentitainin the generative process of the
mIBP, only a finite set of features are sampled for a compongnbther observation worth men-

tioning regarding the way this set is constructed is thay timé most representative featuresypf
get selected irB;.

43 TheiFHMM-iHMM M odel

The iIFHMM is a nonparametric Bayesian factor model that masetheFactorial Hidden Markov
Model (FHMM) [13] by letting the number of parallel Markov chairdd be learned from data.
Although the iIFHMM allows a more flexible representation lo¢ latent structure, it can not be
used as a framework where the number of clustering compsiert infinite. On the other hand,
the iIHMM represents a nonparametric extension of the Hiddarkov Model (HMM) [27] that
allows performing inference on an infinite number of stakés In order to further increase the
representational power for modeling discrete time sei@ts, dve propose a nonparametric extension
that combines the best of the two models, and lets the pasasiddtand K be learned from data.

Each step in the new generative process, whose graphicabmyation is depicted in Figure 3(b),
is performed in two phases: (i) the latent feature variafvtas the iIFHMM framework are sampled
using the mIBP mechanism; and (ii) the features sampledrsa/fach become observable during
this second phase, are used in an adap@am sampling algorithrf29] to infer the clustering
components (or, in our case, latent events).

To describe the beam sampler for event coreference remojutie introduce additional notation.
We denote by(sy,. .., sr) the sequence of hidden states corresponding to the seqakreent
mentions(ys, . . ., yr), where each state, belong to one of the( events,s; € {1,..., K}, and
each mentiony, is represented by a sequence of latent feat(F@sF?, ..., FM). One element of
the transition probabilityr is defined asr;; = P(s; = j | s;—1 = i) and a mentiony, is generated
according to a likelihood modef that is parameterized by a state-dependent pararietey; |

st~ F(¢s,)). The observation parametepsare iid drawn from a prior base distributidi.

The beam sampling algorithm combines the ideas of slice kagn@nd dynamic programming for
an efficient sampling of state trajectories. Since in timesemodels the transition probabilities
have independent priors [5], Van Gael and colleagues [28] abed the HDP mechanism to al-
low couplings across transitions. For sampling the whotkelan state trajectory, this algorithm
employs a forward filtering-backward sampling technique.

In the forward step of our implementation, we sample theuieatariables using the mIBP as de-
scribed in Section 4.1, and the auxiliary variable~ Uniform(0, 75, ,s,) for each mentiory;.
As explained in [29], the auxiliary variablesare used to filter only those trajectorie$or which

"The idea of using this procedure is inspired from [29] whertie variable was used to sample a finite
number of state trajectories in the iHMM.



Ts,_qs, > uz for all ¢. Also, in this step, we compute the probabilitiBgs; | y1.¢, u1.¢) for all t as
described in [29]:

P(st |y, ure) o< Py | s¢) > P(si—1 | Y11, u1:-1)

St—1:Us<Tsy sy

Here, the dependencies involving parameteend¢ are omitted for clarity.

In the backward step, we first sample the event for the lat stadirectly from P(sr | y1.7, u1.7)
and then, for alt : T'— 1,1, we sample each statg given s;;1 by using the formulaP(s; |

St41, Y117 U1:7) X P(Se|y1:0, w1:0) P(Set1]st, wit1)-

To sample the emission distributiah efficiently, and to ensure that each mention is charactgrize
by a finite set of representative features, we set the bas#bditon A to be conjugate with the
data distribution” in a Dirichlet-multinomial model with the sufficient stettis of the multinomial
distribution(o1, . .., 0k ) defined as:

T
k=D D Nk

t=1 fmeB,

wheren,,,;, counts how many times featuf® was sampled for evertt, and B, stores a finite set
of features fony; as it is defined in Section 4.2.

5 Evaluation

Event Coreference Data One corpus used for evaluation is ACE 2005 [18]. This corpumtates
within-document coreference information of specific typésvents (such a€onflict Justice and
Life). After an initial processing phase, we extracted from ACGEH® event mentions and 4946
events. To increase the diversity of events and to evalbatenbdels for both within- and cross-
document event coreference, we created the EventCoref@apks (ECBY This new corpus con-
tains 43 topics, 1744 event mentions, 1302 within-docureegrts, and 339 cross-document events.

For a more realistic approach, we trained the models onaktent mentions from the two corpora
and not only on the mentions manually annotated for everfecence (the true event mentions). In
this regard, we ran the event identifier described in [6] @ARE and ECB corpora, and extracted
45289 and 21175 system mentions respectively.

The Experimental Setup Table 2 lists the recall (R), precision (P), and F-score fF)uy exper-
iments averaged over 5 runs of the generative models. Sirre is no agreement on the best
coreference resolution metric, we employed four metriesofar evaluation: thdink -basedviuc
metric [31], thementionbased? metric [2], theentity-basedcEAF metric [19], and the pairwise
F1 (Pw) metric. In the evaluation process, we considered only rilre mentions of the ACE test
dataset and of the test sets of a 5-fold cross validationnselan the ECB dataset. For evaluating
the cross-document coreference annotations, we adomeshthe approach as described in [3] by
merging all the documents from the same topic into a metastient and then scoring this docu-
ment as performed for within-document evaluation. Alse,doth corpora, we considered a set of
132 feature types, where each feature type consists ongevef8900 distinct feature values.

The Baseline A simple baseline for event coreference consists in graypirents by their event

classes [1]. To extract event classes, we employed the elamttfier described in [6]. Therefore,

this baseline will categorize events into a small numberlosters, since the event identifier is
trained to predict the five event classes annotated in TimkB26]. As it was already observed

[20, 11], considering very few categories for coreferems®iution tasks will result in overestimates
of the MUC scorer. For instance, a baseline that groups élyementions into the same entity

achieves the highest MUC score than any published systetiedask of entity coreference. Similar
behaviour of the MUC metric is observed for event corefeeaesolution. For example, for cross-
document evaluation on ECB, a baseline that clusters altioreninto one event achieves 73.2%
MUC F-score, while the baseline listed in Table 2 achieve8%2MUC F-score.

HDP Extensions Due to memory limitations, we evaluated the HRR and HDR,,.: models
only on a restricted subset of manually selected featurestypn general, as shown in Table 2,
the HDP,,, model achieved the best performance results on the ACE teaset, whereas the

8This resource is available at http://www.hit.utdallas/eeady. The annotation process is described in [7].



Model MUC B? CEAF PW
R P F|R P F|R P F|R P F

ACE (within-document event coreference)

Baseline 943 331 49.0 979 25.0 399 147 644 240 935 82 152
HDP; ¢ (HL) 62.2 431 50.9 86.0 70.6 77.5 623 76.4 68.6 505 27.7 35.8
HDPy 4. 535 542 539 834 842 838 | 769 765 767|433 47.1 451
HDPstruct 619 490 547 | 86.2 76.9 813 69.0 775 73.0053.2 381 444
mIBP-HDP 48.7 419 451 817 764 790 68.8 738 712 374 289 32.6

iFHMM-HMM || 48.7 48.8 48.7 81.9 822 82.1| 746 745 745 37.2 39.0 38.1
ecB (within-document event coreference)

Baseline 92.2 39.8 556 97.7 558 71.0] 445 80.1 57.2 93.7 254 39.8
HDP; ¢ (HL) 469 548 504 843 89.0 86.5 834 79.6 814 36.6 534 42.6
HDPy;4: 37.8 929 534 821 99.2 89.8 939 782 853 27.0 924 413
HDPstruct 47.4 827 60.1 | 84.3 97.1 90.2 | 92.7 81.1 865 | 344 83.0 486
mIBP-HDP 38.2 688 48.9 821 953 882 90.3 785 84.0 265 679 37.7

iFHMM-HMM || 39.5 852 539 825 98.1 89.6 93.1 78.8 853 29.4 86.6 43.7
ECB (cross-document event coreference)

Baseline 905 61.1 729 | 93.8 49.6 64.9 36.6 72.7 48.7 90.7 28.6 43.3
HDP; ¢ (HL) 477 705 56.8 67.0 86.2 753 76.2 571 652 349 589 435
HDPy;4: 444 953 60.5 65.0 98.7 783 86.9 56.0 68.0 29.2 951 444
HDPstruct 519 895 65.7 69.3 958 804 | 86.2 60.1 708 | 375 85.6 521
mIBP-HDP 40.0 79.8 5321 63.1 94.1 755 827 546 657 261 77.0 38.9

iIFHMM-iHMM 48.4 89.0 62.7/ 67.0 96.4 79.00 85,5 58.0 69.1 33.3 88.3 48.2
Table 2: Evaluation results for within- and cross-docunseint coreference resolution.

HDP,;,-.. model, which also considers dependencies between featoes,tproved to be more
effective on the ECB dataset for both within- and cross-doent event coreference evaluation. The
set of feature types used to achieve these results consistenbinations of types from all feature
categories described in Section 2.2. For the results of igH.,.. model listed in Table 2, we also
explored the conditional dependencies betweemtheRr, andrFEA types.

As can be observed from Table 2, the results of the IHpFRand HDRy,.... models show an F-score
increase by 4-10% over the HPPmodel, and therefore prove that the HDP extensions provide a
more flexible representation for clustering objects charémed by rich properties.

mIBP-HDP In spite of its advantage of working with a potentially infaihumber of features in an
HDP framework, the mIBP-HDP model did not achieve a sattsfgcperformance in comparison
with the other proposed models. However, the results wetairtdd by automatically selecting
only 2% of distinct feature values from the entire set of ealextracted from both corpora. When
compared with the restricted set of features consideretidyiDP;;,; and HDRy,.,..: models, the
percentage of values selected by mIBP-HDP is only 6%. A &tesearch area for improving this
model is to consider other distributions for automatic e of salient feature values.

iFHMM-iHMM In spite of the automatic feature selection employed foifkBMM-iHMM model,

its results remain competitive against the results of théPHXtensions (where the feature types
were hand tuned). As shown in Table 2, most of the IFHMM-iHM&ults fall in between the
HDPy; and HDRy,... models. Also, these results indicate that the iFHMM-iIHMM aabis a
better framework than HDP in capturing the event mentioreddpncies simulated by the mIBP
feature sampling scheme. Similar to the mIBP-HDP modelctoeve these results, the iFHMM-
iHMM model uses only 2% values from the entire set of distieature values. For the experiments
of the iIFHMM-iHMM results reported in Table 2, we set=50,~'=0.5, and'=0.5.

6 Conclusion

In this paper, we have described how a sequence of unsupeyvisnparametric Bayesian models
can be employed to cluster complex linguistic objects thetharacterized by a rich set of features.
The experimental results proved that these models are @atate real data applications in which

the feature and cluster numbers are treated as free parairaatd the selection of features is per-
formed automatically. While the results of event corefeeeresolution are promising, we believe
that the classes of models proposed in this paper have atilégifar a wide range of applications.
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