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Abstract

We present a sequence of unsupervised, nonparametric Bayesian models for clus-
tering complex linguistic objects. In this approach, we consider a potentially infi-
nite number of features and categorical outcomes. We evaluated these models for
the task of within- and cross-document event coreference ontwo corpora. All the
models we investigated show significant improvements when compared against an
existing baseline for this task.

1 Introduction
In Natural Language Processing (NLP), the task of event coreference has numerous applications,
including question answering, multi-document summarization, and information extraction. Two
event mentions arecoreferentialif they share the same participants and spatio-temporal groundings.
Moreover, two event mentions areidentical if they have the same causes and effects. For example,
the three documents listed in Table 1 contains four mentionsof identical events but only thearrested,
apprehended, andarrestmentions from the documents 1 and 2 are coreferential. Thesedefinitions
were used in the tasks of Topic Detection and Tracking (TDT),as reported in [24].

Previous approaches to event coreference resolution [3] used the same lexeme or synonymy of the
verb describing the event to decide coreference. Event coreference was also tried by using the
semantic types of an ontology [17]. However, the features used by these approaches are hard to select
and require the design of domain specific constraints. To address this problems, we have explored
a sequence of unsupervised, nonparametric Bayesian modelsthat are used to probabilistically infer
coreference clusters of event mentions from a collection ofunlabeled documents. Our approach
is motivated by the recent success of unsupervised approaches for entity coreference resolution
[16, 22, 25] and by the advantages of using a large amount of data at no cost.

One model was inspired by the fully generative Bayesian model proposed by Haghighi and Klein
[16] (henceforth, H&K). However, to employ the H&K’s model for tasks that require clustering
objects with rich linguistic features (such as event coreference resolution), or to extend this model in
order to enclose additional observable properties is a challenging task [22, 25]. In order to counter
this limitation, we make a conditional independence assumption between the observable features
and propose a generalized framework (Section 3) that is ableto easily incorporate new features.

During the process of learning the model described in Section 3, it was observed that a large amount
of time was required to incorporate and tune new features. This lead us to the challenge of creating a
framework which considers an unbounded number of features where the most relevant are selected
automatically. To accomplish this new goal, we propose two novel approaches (Section 4). The
first incorporates aMarkov Indian Buffet Process(mIBP) [30] into aHierarchical Dirichlet Process
(HDP) [28]. The second uses anInfinite Hidden Markov Model(iHMM) [5] coupled to anInfinite
Factorial Hidden Markov Model(iFHMM) [30].

In this paper, we focus on event coreference resolution, though adaptations for event identity resolu-
tion can be easily made. We evaluated the models on the ACE 2005 event corpus [18] and on a new
annotated corpus encoding within- and cross-document event coreference information (Section 5).
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Document 1: San Diego Chargers receiver Vincent Jackson wasarrested on suspicion of drunk driving on
Tuesday morning, five days before a key NFL playoff game.. . .
Police apprehended Jackson in San Diego at 2:30 a.m. and booked him for the misdemeanour before his
release.
Document 2: Despite hisarrest on suspicion of driving under the influence yesterday, Chargers receiver
Vincent Jackson will play in Sunday’s AFC divisional playoff game at Pittsburgh.
Document 3: In another anti-piracy operation, Navy warship on Saturdayrepulsed an attack on a merchant
vessel in the Gulf of Aden andnabbed 23 Somali and Yemeni sea brigands.

Table 1:Examples of coreferential and identical events.

2 Event Coreference Resolution
Models for solving event coreference and event identity canlead to the generation of ad-hoc event
hierarchies from text. A sample of a hierarchy capturing corefering and identical events, including
those from the example presented in Section 1, is illustrated in Figure 1.
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Figure 1:A portion of the event hierarchy.

First, we introduce some basic notation.1 Next, to cluster the mentions that share common event
properties (as shown in Figure 1), we briefly describe the linguistic features of event mentions.

2.1 Notation
As input for our models, we consider a collection ofI documents, each documenti havingJi event
mentions. Each event mention is characterized byL feature types, FT, and each feature type is
represented by a finite number offeature values, fv. Therefore, we can represent the observable
properties of an event mention,em, as a vector of pairs〈(FT1 : fv1i), . . . , (FTL : fvLi)〉, where each
feature value indexi ranges in the feature value space associated with a feature type.

2.2 Linguistic Features
We consider the following set of features associated to an event mention:2

Lexical Features (LF) To capture the lexical context of an event mention, we extract the following
features: the head word of the mention (HW), the lemma of theHW (HL), lemmas of left and right
words of the mention (LHL ,RHL), and lemmas of left and right mentions (LHE,RHE).

Class Features (CF) These features aim to classify mentions into several types of classes: the
mentionHW’s part-of-speech (POS), the word class of theHW (HWC), which can take one of the
following values〈verb, noun, adjective, other〉, and the event class of the mention (EC). To extract
the event class associated to every event mention, we employed the event identifier described in [6].

WordNet Features (WF) We build three types of clusters over all the words from WordNet [9]
and use them as features for the mentionHW. First cluster type associates an uniqueid to each
(word:HWC) pair (WNW). The second cluster type uses the transitive closure of thesynonymous
relations to group words from WordNet (WNS). Finally, the third cluster type considers as grouping
criteria the category from WordNet lexicographer’s files that is associated to each word (WNL). For
cases when a new word does not belong to any of these WordNet clusters, we create a new cluster
with a newid for each of the three cluster types.

Semantic Features (SF) To extract features that characterize participants and properties of event
mentions, we use s semantic parser [8] trained on PropBank(PB) [23] and FrameNet(FN) [4] cor-
pora. (For instance, for theapprehendedmention from our example,Jacksonis the feature value

1For consistency, we try to preserve the notation of the original models.
2In this subsection and the following section, the feature term is used in context of a feature type.
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for A0 PB argument3 and theSUSPECTframe element (FEA0) of the ARREST frame.) Another se-
mantic feature is the semantic frame (FR) that is evoked by an event mention. (For instance, all the
emphasized mentions from our example evoke theARREST frame from FN.)

Feature Combinations (FC) We also explore various combinations of features presentedabove.
Examples includeHW+POS, HL+FR, FE+A1, etc.

3 Finite Feature Models
In this section, we present a sequence of HDP mixture models for solving event coreference. For this
type of approach, aDirichlet Process(DP) [10] is associated with each document, and each mixture
component, which in our case corresponds to an event, is shared across documents. To describe
these models, we considerZ the set of indicator random variables for indices of events,φz the set
of parameters associated to an eventz, φ a notation for all model parameters, andX a notation for
all random variables that represent observable features.

Given a document collection annotated with event mentions,the goal is to find the best assignment
of event indices,Z∗, which maximize the posterior probabilityP (Z |X). In a Bayesian approach,
this probability is computed by integrating out all model parameters:

P (Z|X) =

∫

P (Z, φ|X)dφ =

∫

P (Z|X, φ)P (φ|X)dφ

In order to describe our modifications, we first revisit a basic model from the set of models described
in H&K’s paper.
3.1 The One Feature Model
The one feature model, HDP1f , constitutes the simplest representation of an HDP model. In this
model, which is depicted graphically in Figure 2(a), the observable components are characterized
by only one feature. The distribution over events associated to each documentβ is generated by a
Dirichlet process with a concentration parameterα > 0. Since this setting enables a clustering of
event mentions at the document level, it is desirable that events are shared across documents and
the number of eventsK is inferred from data. To ensure this flexibility, a global nonparametric
DP prior with a hyperparameterγ and a global base measureH can be considered forβ [28]. The
global distribution drawn from this DP prior, denoted asβ0 in Figure 2(a), encodes the event mixing
weights. Thus, same global events are used for each document, but each event has a document
specific distributionβi that is drawn from a DP prior centered onβ0.

To infer the true posterior probability ofP (Z|X), we follow [28] in using a Gibbs sampling algo-
rithm [12] based on the direct assignment sampling scheme. In this sampling scheme, theβ andφ
parameters are integrated out analytically. The formula for sampling an event index for mentionj
from documenti, Zi,j , is given by:4

P (Zi,j | Z−i,j ,HL) ∝ P (Zi,j | Z−i,j)P (HLi,j | Z,HL
−i,j)

whereHLi,j is the head lemma of the event mentionj from the documenti.

First, in the generative process of an event mention, an event indexz is sampled by using a mecha-
nism that facilitates sampling from a prior for infinite mixture models called the Chinese Restaurant
Franchise (CRF) representation [28]:

P (Zi,j = z | Z−i,j , β0) ∝

{

αβu
0 , if z = znew

nz + αβz
0 , otherwise

Here,nz is the number of event mentions with the event indexz, znew is a new event index not used
already inZ

−i,j , βz
0 are the global mixing proportions associated to theK events, andβu

0 is the
weight for the unknown mixture component.

Then, to generate the mention head lemma (in this model,X = 〈HL〉), the eventz is associated with
a multinomial emission distribution over theHL feature values having the parametersφ = 〈φhl

Z 〉.
We assume that this emission distribution is drawn from a symmetric Dirichlet distribution with
concentrationλHL:

3A0 annotates in PB a specific type of semantic role which represents theAGENT, theDOER, or theACTOR
of a specific event. Another PB argument isA1, which plays the role of thePATIENT, the THEME, or the
EXPERIENCERof an event.

4
Z

−i,j represents a notation forZ − {Zi,j}.
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Figure 2: Graphical representation of four HDP models. Each node corresponds to a random variable. In
particular, shaded nodes denotes observable variables. Each rectangle captures the replication of the structure
it contains. The number of replications is indicated in the bottom-right corner of the rectangle. The model
depicted in (a) is an HDP model using one feature; the model in(b) employsHL andFR features; (c) illustrates
a flat representation of a limited number of features in a generalized framework (henceforth, HDPflat); and (d)
captures a simple example of structured network topology ofthree feature variables (henceforth, HDPstruct).
The dependencies involving parametersφ andθ in models (b), (c), and (d) are omitted for clarity.

P (HLi,j = hl | Z,HL
−i,j) ∝ nhl,z + λHL

whereHLi,j is the head lemma of mentionj from documenti, andnhl,z is the number of times
the feature valuehl has been associated with the event indexz in (Z,HL

−i,j ). We also apply the
Lidstone’s smoothing method to this distribution.
3.2 Adding More Features
A model in which observable components are represented onlyby one feature has the tendency to
cluster these components based on their feature value. To address this limitation, H&K proposed
a more complex model that is strictly customized for entity coreference resolution. On the other
hand, event coreference involves clustering complex objects characterized by richer features than
entity coreference (or topic detection), and therefore it is desirable to extend the HDP1f model with
a generalized model where additional features can be easilyincorporated.

To facilitate this extension, we assume that feature variables are conditionally independent givenZ.
This assumption considerably reduces the complexity of computingP (Z |X). For example, if we
want to incorporate another feature (e.g.,FR) in the previous model, the formula becomes:

P (Zi,j |HL,FR) ∝ P (Zi,j)P (HLi,j , FRi,j |Z) = P (Zi,j)P (HLi,j |Z)P (FRi,j |Z)

In this formula, we omit the conditioning components ofZ, HL, andFR for clarity. The graphical
representation corresponding to this model is illustratedin Figure 2(b). In general, ifX consists of
L feature variables, the inference formula for the Gibbs sampler is defined as:

P (Zi,j |X) ∝ P (Zi,j)
∏

FT∈X

P (FTi,j |Z)

The graphical model for this general setting is depicted in Figure 2(c). Drawing an analogy, the
graphical representation involving feature variables andZ variables resembles the graphical repre-
sentation of a Naive Bayes classifier.

When dependencies between feature variables exist (e.g., in our case, frame elements are dependent
of the semantic frames that define them, and frames are dependent of the words that evoke them),
various global distributions are involved for computingP (Z | X). For instance, for the model
depicted in Figure 2(d) the posterior probability is given by:

P (Zi,j)P (FRi,j |HLi,j , θ)
∏

FT∈X

P (FTi,j |Z)

In this model,P (FRi,j | HLi,j , θ) is a global distribution parameterized byθ, and the feature
variables considered areX=〈HL,POS,FR〉.
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For all these extended models, we compute the prior and likelihood factors as described in the one
feature model. Also, following H&K, in the inference mechanism we assign soft counts for missing
features (e.g., unspecified PB argument).

4 Unbounded Feature Models
First, we present a generative model called theMarkov Indian Buffet Process(mIBP) that provides a
mechanism in which each object can be represented by a sparsesubset of a potentially unbounded set
of latent features [15, 14, 30].5 Then, to overcome the limitations regarding the number of mixture
components and the number of features associated with objects, we combine this mechanism with
an HDP model to form an mIBP-HDP hybrid. Finally, to account for temporal dependencies, we
employ an mIBP extension, called theInfinite Factorial Hidden Markov Model(iFHMM) [30], in
combination with anInfinite Hidden Markov Model(iHMM) to form the iFHMM-iHMM model.
4.1 The Markov Indian Buffet Process
As described in [30], the mIBP defines a distribution over an unbounded set of binary Markov chains,
where each chain can be associated to a binary latent featurethat evolves over time according to
Markov dynamics. Specifically, if we denote byM the total number of feature chains and byT
the number of observable components (event mentions), the mIBP defines a probability distribution
over a binary matrixF with T rows, which correspond to observations, and an unbounded number
of columns (M → ∞), which correspond to features. An observationyt contains a subset from
the unbounded set of features{f1, f2, . . . , fM} that is represented in the matrix by a binary vector
Ft =〈F 1

t , F 2
t , . . . , FM

t 〉, whereF i
t =1 indicates thatf i is associated toyt.

Therefore,F decomposes the observations and represents them as featurefactors, which can then
be associated to hidden variables in an iFHMM as depicted in Figure 3(a). The transition matrix of
a binary Markov chain associated to a featurefm is defined as

W
(m) =

(

1 − am am

1 − bm bm

)

whereW(m)
ij = P (Fm

t+1 = j |Fm
t = i), the parametersam ∼Beta(α′/M, 1) andbm ∼Beta(γ′, δ′),

and the initial stateFm
0 = 0. In the generative process, the hidden variable of featurefm for an

objectyt, Fm
t ∼Bernoulli(a

1−F m

t−1

m b
F m

t−1

m ).

To compute the probability of the feature matrixF
6, in which the parametersa andb are integrated

out analytically, we use the counting variablesc00
m , c01

m , c10
m , andc11

m to record the0 → 0, 0 → 1,
1→0, and1→1 transitionsfm has made in the binary chainm. The stochastic process that derives
the probability distribution in terms of these variables isdefined as follows. The first component
samples a number ofPoisson(α′) features. In general, depending on the value that was sampled in
the previous step (t − 1), a featurefm is sampled for thetth component according to the following
probabilities:

P (Fm
t = 1 |Fm

t−1 =1) =
c11
m + δ′

γ′ + δ′ + c10
m + c11

m

P (Fm
t = 1 |Fm

t−1 =0) =
c00
m

c00
m + c01

m

Thetth component then repeats the same mechanism for sampling the next features until it finishes
the current number of sampled featuresM . After all features are sampled for thetth component,
a number ofPoisson(α′/t) new features are assigned for this component andM gets incremented
accordingly.
4.2 The mIBP-HDP Model
One direct application of the mIBP is to integrate it into theHDP models proposed in Section 3. In
this way, the new nonparametric extension will have the benefits of capturing uncertainty regarding
the number of mixture components that are characterized by apotentially infinite number of features.
Since one observable component is associated with an unbounded countable set of features, we have
to provide a mechanism in which only a finite set of features will represent the component in the
HDP inference process.

5In this section, a feature is represented by a (feature type:feature value) pair.
6Technical details for computing this probability are described in [30].
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Figure 3:(a) The Infinite Factorial Hidden Markov Model. (b) The iFHMM-iHMM model. (M→∞)

The idea behind this mechanism is to useslice sampling7 [21] in order to derive a finite set of
features foryt. Lettingqm be the number of times featurefm was sampled in the mIBP, andvt an
auxiliary variable foryt such thatvt∼Uniform(1, max{qm | Fm

t =1}), we define the finite feature
setBt for the observationyt as:

Bt = {fm | Fm
t = 1 ∧ qm ≥ vt}

The finiteness of this feature set is based on the observationthat, in the generative process of the
mIBP, only a finite set of features are sampled for a component. Another observation worth men-
tioning regarding the way this set is constructed is that only the most representative features ofyt

get selected inBt.

4.3 The iFHMM-iHMM Model
The iFHMM is a nonparametric Bayesian factor model that extends theFactorial Hidden Markov
Model (FHMM) [13] by letting the number of parallel Markov chainsM be learned from data.
Although the iFHMM allows a more flexible representation of the latent structure, it can not be
used as a framework where the number of clustering componentsK is infinite. On the other hand,
the iHMM represents a nonparametric extension of the HiddenMarkov Model (HMM) [27] that
allows performing inference on an infinite number of statesK. In order to further increase the
representational power for modeling discrete time series data, we propose a nonparametric extension
that combines the best of the two models, and lets the parametersM andK be learned from data.

Each step in the new generative process, whose graphical representation is depicted in Figure 3(b),
is performed in two phases: (i) the latent feature variablesfrom the iFHMM framework are sampled
using the mIBP mechanism; and (ii) the features sampled so far, which become observable during
this second phase, are used in an adaptedbeam sampling algorithm[29] to infer the clustering
components (or, in our case, latent events).

To describe the beam sampler for event coreference resolution, we introduce additional notation.
We denote by(s1, . . . , sT ) the sequence of hidden states corresponding to the sequenceof event
mentions(y1, . . . , yT ), where each statest belong to one of theK events,st ∈ {1, . . . , K}, and
each mentionyt is represented by a sequence of latent features〈F 1

t , F 2
t , . . . , FM

t 〉. One element of
the transition probabilityπ is defined asπij = P (st = j | st−1 = i) and a mentionyt is generated
according to a likelihood modelF that is parameterized by a state-dependent parameterφst

(yt |
st∼F(φst

)). The observation parametersφ are iid drawn from a prior base distributionH .

The beam sampling algorithm combines the ideas of slice sampling and dynamic programming for
an efficient sampling of state trajectories. Since in time series models the transition probabilities
have independent priors [5], Van Gael and colleagues [29] also used the HDP mechanism to al-
low couplings across transitions. For sampling the whole hidden state trajectorys, this algorithm
employs a forward filtering-backward sampling technique.

In the forward step of our implementation, we sample the feature variables using the mIBP as de-
scribed in Section 4.1, and the auxiliary variableut ∼ Uniform(0, πst−1st

) for each mentionyt.
As explained in [29], the auxiliary variablesu are used to filter only those trajectoriess for which

7The idea of using this procedure is inspired from [29] where aslice variable was used to sample a finite
number of state trajectories in the iHMM.
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πst−1st
≥ ut for all t. Also, in this step, we compute the probabilitiesP (st | y1:t, u1:t) for all t as

described in [29]:

P (st | y1:t, u1:t) ∝ P (yt | st)
∑

st−1:ut<πst−1st

P (st−1 | y1:t−1, u1:t−1)

Here, the dependencies involving parametersπ andφ are omitted for clarity.

In the backward step, we first sample the event for the last state sT directly fromP (sT |y1:T , u1:T )
and then, for allt : T − 1, 1, we sample each statest given st+1 by using the formulaP (st |
st+1, y1:T , u1:T)∝P (st|y1:t, u1:t)P (st+1|st, ut+1).

To sample the emission distributionφ efficiently, and to ensure that each mention is characterized
by a finite set of representative features, we set the base distribution H to be conjugate with the
data distributionF in a Dirichlet-multinomial model with the sufficient statistics of the multinomial
distribution(o1, . . . , oK) defined as:

ok =

T
∑

t=1

∑

fm∈Bt

nmk

wherenmk counts how many times featurefm was sampled for eventk, andBt stores a finite set
of features foryt as it is defined in Section 4.2.

5 Evaluation
Event Coreference Data One corpus used for evaluation is ACE 2005 [18]. This corpus annotates
within-document coreference information of specific typesof events (such asConflict, Justice, and
Life). After an initial processing phase, we extracted from ACE 6553 event mentions and 4946
events. To increase the diversity of events and to evaluate the models for both within- and cross-
document event coreference, we created the EventCorefBankcorpus (ECB).8 This new corpus con-
tains 43 topics, 1744 event mentions, 1302 within-documentevents, and 339 cross-document events.

For a more realistic approach, we trained the models on all the event mentions from the two corpora
and not only on the mentions manually annotated for event coreference (the true event mentions). In
this regard, we ran the event identifier described in [6] on the ACE and ECB corpora, and extracted
45289 and 21175 system mentions respectively.

The Experimental Setup Table 2 lists the recall (R), precision (P), and F-score (F) of our exper-
iments averaged over 5 runs of the generative models. Since there is no agreement on the best
coreference resolution metric, we employed four metrics for our evaluation: thelink -basedMUC
metric [31], themention-basedB3 metric [2], theentity-basedCEAF metric [19], and the pairwise
F1 (PW) metric. In the evaluation process, we considered only the true mentions of the ACE test
dataset and of the test sets of a 5-fold cross validation scheme on the ECB dataset. For evaluating
the cross-document coreference annotations, we adopted the same approach as described in [3] by
merging all the documents from the same topic into a meta-document and then scoring this docu-
ment as performed for within-document evaluation. Also, for both corpora, we considered a set of
132 feature types, where each feature type consists on average of 3900 distinct feature values.

The Baseline A simple baseline for event coreference consists in grouping events by their event
classes [1]. To extract event classes, we employed the eventidentifier described in [6]. Therefore,
this baseline will categorize events into a small number of clusters, since the event identifier is
trained to predict the five event classes annotated in TimeBank [26]. As it was already observed
[20, 11], considering very few categories for coreference resolution tasks will result in overestimates
of the MUC scorer. For instance, a baseline that groups all entity mentions into the same entity
achieves the highest MUC score than any published system forthe task of entity coreference. Similar
behaviour of the MUC metric is observed for event coreference resolution. For example, for cross-
document evaluation on ECB, a baseline that clusters all mentions into one event achieves 73.2%
MUC F-score, while the baseline listed in Table 2 achieves 72.9% MUC F-score.

HDP Extensions Due to memory limitations, we evaluated the HDPflat and HDPstruct models
only on a restricted subset of manually selected feature types. In general, as shown in Table 2,
the HDPflat model achieved the best performance results on the ACE test dataset, whereas the

8This resource is available at http://www.hlt.utdallas.edu/∼ady. The annotation process is described in [7].
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Model MUC B3 CEAF PW
R P F R P F R P F R P F

ACE (within-document event coreference)
Baseline 94.3 33.1 49.0 97.9 25.0 39.9 14.7 64.4 24.0 93.5 8.2 15.2
HDP1f (HL) 62.2 43.1 50.9 86.0 70.6 77.5 62.3 76.4 68.6 50.5 27.7 35.8
HDPflat 53.5 54.2 53.9 83.4 84.2 83.8 76.9 76.5 76.7 43.3 47.1 45.1
HDPstruct 61.9 49.0 54.7 86.2 76.9 81.3 69.0 77.5 73.0 53.2 38.1 44.4
mIBP-HDP 48.7 41.9 45.1 81.7 76.4 79.0 68.8 73.8 71.2 37.4 28.9 32.6
iFHMM-iHMM 48.7 48.8 48.7 81.9 82.2 82.1 74.6 74.5 74.5 37.2 39.0 38.1

ECB (within-document event coreference)
Baseline 92.2 39.8 55.6 97.7 55.8 71.0 44.5 80.1 57.2 93.7 25.4 39.8
HDP1f (HL) 46.9 54.8 50.4 84.3 89.0 86.5 83.4 79.6 81.4 36.6 53.4 42.6
HDPflat 37.8 92.9 53.4 82.1 99.2 89.8 93.9 78.2 85.3 27.0 92.4 41.3
HDPstruct 47.4 82.7 60.1 84.3 97.1 90.2 92.7 81.1 86.5 34.4 83.0 48.6
mIBP-HDP 38.2 68.8 48.9 82.1 95.3 88.2 90.3 78.5 84.0 26.5 67.9 37.7
iFHMM-iHMM 39.5 85.2 53.9 82.5 98.1 89.6 93.1 78.8 85.3 29.4 86.6 43.7

ECB (cross-document event coreference)
Baseline 90.5 61.1 72.9 93.8 49.6 64.9 36.6 72.7 48.7 90.7 28.6 43.3
HDP1f (HL) 47.7 70.5 56.8 67.0 86.2 75.3 76.2 57.1 65.2 34.9 58.9 43.5
HDPflat 44.4 95.3 60.5 65.0 98.7 78.3 86.9 56.0 68.0 29.2 95.1 44.4
HDPstruct 51.9 89.5 65.7 69.3 95.8 80.4 86.2 60.1 70.8 37.5 85.6 52.1
mIBP-HDP 40.0 79.8 53.2 63.1 94.1 75.5 82.7 54.6 65.7 26.1 77.0 38.9
iFHMM-iHMM 48.4 89.0 62.7 67.0 96.4 79.0 85.5 58.0 69.1 33.3 88.3 48.2

Table 2: Evaluation results for within- and cross-documentevent coreference resolution.

HDPstruct model, which also considers dependencies between feature types, proved to be more
effective on the ECB dataset for both within- and cross-document event coreference evaluation. The
set of feature types used to achieve these results consists of combinations of types from all feature
categories described in Section 2.2. For the results of the HDPstruct model listed in Table 2, we also
explored the conditional dependencies between theHL, FR, andFEA types.

As can be observed from Table 2, the results of the HDPflat and HDPstruct models show an F-score
increase by 4-10% over the HDP1f model, and therefore prove that the HDP extensions provide a
more flexible representation for clustering objects characterized by rich properties.

mIBP-HDP In spite of its advantage of working with a potentially infinite number of features in an
HDP framework, the mIBP-HDP model did not achieve a satisfactory performance in comparison
with the other proposed models. However, the results were obtained by automatically selecting
only 2% of distinct feature values from the entire set of values extracted from both corpora. When
compared with the restricted set of features considered by the HDPflat and HDPstruct models, the
percentage of values selected by mIBP-HDP is only 6%. A future research area for improving this
model is to consider other distributions for automatic selection of salient feature values.

iFHMM-iHMM In spite of the automatic feature selection employed for theiFHMM-iHMM model,
its results remain competitive against the results of the HDP extensions (where the feature types
were hand tuned). As shown in Table 2, most of the iFHMM-iHMM results fall in between the
HDPflat and HDPstruct models. Also, these results indicate that the iFHMM-iHMM model is a
better framework than HDP in capturing the event mention dependencies simulated by the mIBP
feature sampling scheme. Similar to the mIBP-HDP model, to achieve these results, the iFHMM-
iHMM model uses only 2% values from the entire set of distinctfeature values. For the experiments
of the iFHMM-iHMM results reported in Table 2, we setα′=50,γ′=0.5, andδ′=0.5.

6 Conclusion

In this paper, we have described how a sequence of unsupervised, nonparametric Bayesian models
can be employed to cluster complex linguistic objects that are characterized by a rich set of features.
The experimental results proved that these models are able to solve real data applications in which
the feature and cluster numbers are treated as free parameters, and the selection of features is per-
formed automatically. While the results of event coreference resolution are promising, we believe
that the classes of models proposed in this paper have a real utility for a wide range of applications.
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