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Abstract

In the Gaussian process regression the observation model is commonly assumed
to be Gaussian, which is convenient in computational perspective. However, the
drawback is that the predictive accuracy of the model can be significantly com-
promised if the observations are contaminated by outliers. A robust observation
model, such as the Student-¢ distribution, reduces the influence of outlying obser-
vations and improves the predictions. The problem, however, is the analytically
intractable inference. In this work, we discuss the properties of a Gaussian process
regression model with the Student-¢ likelihood and utilize the Laplace approxima-
tion for approximate inference. We compare our approach to a variational approx-
imation and a Markov chain Monte Carlo scheme, which utilize the commonly
used scale mixture representation of the Student-¢ distribution.

1 Introduction

A commonly used observation model in the Gaussian process (GP) regression is the Normal distri-
bution. This is convenient since the inference is analytically tractable up to the covariance function
parameters. However, a known limitation with the Gaussian observation model is its non-robustness,
and replacing the normal distribution with a heavy-tailed one, such as the Student-¢ distribution, can
be useful in problems with outlying observations.

If both the prior and the likelihood are Gaussian, the posterior is Gaussian with mean between
the prior mean and the observations. In conflict this compromise is not supported by either of
the information sources. Thus, outlying observations may significantly reduce the accuracy of the
inference. For example, a single corrupted observation may pull the posterior expectation of the
unknown function value considerably far from the level described by the other observations (see
Figure 1). A robust, or outlier-prone, observation model would, however, weight down the outlying
observations the more, the further away they are from the other observations and prior mean.

The idea of robust regression is not new. Outlier rejection was described already by De Finetti [1]
and theoretical results were given by Dawid [2], and O’Hagan [3]. Student-¢ observation model with
linear regression was studied already by West [4] and Geweke [5], and Neal [6] introduced it for GP
regression. Other robust observation models include, for example, mixtures of Gaussians, Laplace



(a) Gaussian observation model. (b) Student-t observation model.

Figure 1: An example of regression with outliers by Neal [6]. On the left Gaussian and on the right
the Student-¢ observation model. The real function is plotted with black line.

distribution and input dependent observation models [7-10]. The challenge with the Student-t model
is the inference, which is analytically intractable. A common approach has been to use the scale-
mixture representation of the Student-t distribution [S], which enables Gibbs sampling [5, 6], and a
factorized variational approximation (VB) for the posterior inference [7, 11].

Here, we discuss the properties of the GP regression with a Student-t likelihood and utilize the
Laplace approximation for the approximate inference. We discuss the known weaknesses of the
approximation scheme and show that in practice it works very well and quickly. We use several
different data sets to compare it to both a full MCMC and a factorial VB, which utilize the scale
mixture equivalent of the Student-t distribution. We show that the predictive performances are sim-
ilar and that the Laplace’s method approximates the posterior covariance somewhat better than VB.
We also point out some of the similarities between these two methods and discuss their differences.

2 Robust regression with Gaussian processes

Consider a regression problem, where the data comprise observations y; = f(x;) + €; at input
locations X = {x;}"_,, where the observation errors €1, ..., €, are zero-mean exchangeable random
variables. The object of inference is the latent function f, which is given a Gaussian process prior.
This implies that any finite subset of latent variables, f = {f(x;)}?_;, has a multivariate Gaussian
distribution. In particular, at the observed input locations X the latent variables have a distribution

p(f|X) :N(f‘/“t?Kf,f)? (1)

where K ¢ is the covariance matrix and . the mean function. For the notational simplicity, we will
use a zero-mean Gaussian process. Each element in the covariance matrix is a realization of covari-
ance function, [Kf’f]ij = k(x;,X;), which represents the prior assumptions of the smoothness of the
latent function (for a detailed introduction on GP regression see [12]). The covariance function used
in this work is the stationary squared exponential ke.(x;,%X;) = 02 exp(— S0, (zi.a — x.4)/12),
where o2, is the scaling parameter and [, are the length-scales.

A formal definition of robustness is given, for example, in terms of an outlier-prone observation
model. The observation model is defined to be outlier-prone of order n, if p(f|y1,..., Ynt+1) —
p(fly1, s Yn) @S Ynt1 — oo [3, 4]. That is, the effect of a single conflicting observation to the
posterior becomes asymptotically negligible as the observation approaches infinity. This contrasts
heavily with the Gaussian observation model where each observation influences the posterior no
matter how far it is from the others. The zero-mean Student-¢ distribution

T(v+1)/2) (1 + (yi — fi)2>_(y+1)/27

I(v/2)\/vmo @

p(yi|f¢,0',V) = Vo2
where v is the degrees of freedom and o the scale parameter [13], is outlier prone of order 1, and
it can reject up to m outliers if there are at least 2m observations in all [3]. From this on we will
collect all the hyperparameters into § = {02,,11,...,Ip, o, v}.



3 Inference with the Laplace approximation

3.1 The conditional posterior of the latent variables

Our approach is motivated by the Laplace approximation in GP classification [14]. A similar ap-
proximation has been considered by West [4] in the case of robust linear regression and by Rue
et al. [15] in their integrated nested Laplace approximation (INLA). Below we follow the notation
of Rasmussen and Williams [12].

A second order Taylor expansion of log p(f | y, 8) around the mode, gives a Gaussian approximation
p(f|y,0) = q(f]y,0) = N(f [f, =),

where f = argmaxg p(f |y, #) and X~ is the Hessian of the negative log conditional posterior at
the mode f [12, 13]:
27 = —VVlogp(f]y, 0)le_p = K +W, 3)

where

r? —vo?

Wi = — 1)
v+ )(7"22 +vo?)?

“4)

ri = (y; — fi), and W; = 0if i # j.

3.2 The maximum a posterior estimate of the hyperparameters

To find a maximum a posterior estimate (MAP) for the hyperparameters, we write p(f|y)
p(y |0)p(0), where
oy 16) = [ ply|D(e X 0)at. ©

is the marginal likelihood. To find an approximation, ¢(y |€), for the marginal likelihood one can
utilize the Laplace method second time [12]. A Taylor expansion of the logarithm of the integrand

in (5) around f gives a Gaussian integral over f multiplied by a constant, giving
P lar 44 1 1 1
log q(y |0) = log p(y|f) — §f Kiff — B log | K¢ | — ilog | K +WI. (6)

The hyperparameters can then be optimized by maximizing the approximate log marginal posterior,
log q(0]y) x logq(y |0) + log p(#). This is differentiable with respect to 6, which enables the use

of gradient based optimization to find 6 = arg max, q(0|y) [12].

3.3 Making predictions

The approximate posterior distribution of a latent variable f, at a new input location x, is also
Gaussian, and therefore defined by its mean and variance [12]

E [fX.y,x] =K. K f=K.;Vigp(y|f) (7)
q(fly.0)

Var [fo|X,y, %] = Kiw — Ko p(Ke s +WH) K (8)
q(fly.0)

The predictive distribution of a new observation is obtained by marginalizing over the posterior
distribution of f,

q(y X, y, %) = /p(y*\f*)q(f*IX,y, X, )dfs, ©)

which can be evaluated, for example, with a Gaussian quadrature integration.

3.4 Properties of the Laplace approximation

The Student-¢ distribution is not log-concave, and therefore the posterior distribution may be mul-
timodal. The immediate concern from this is that a unimodal Laplace approximation may give
a poor estimate for the posterior. This is, however, a problem for all unimodal approximations,
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Figure 2: A comparison of the Laplace and VB approximation for p(f|,y) in the case of a single
observation with the Student-¢ likelihood and a Gaussian prior. The likelihood is centered at zero
and the prior mean is altered. The upper plots show the probability density functions and the lower
plots the variance of the true posterior and its approximations as a function of the posterior mean.

such as the VB in [7, 11]. An other concern is that the estimate of the posterior precision,
! = —VVlogp(f|y,0)|;_s. is essentially uncontrolled. However, at a posterior mode f, the
Hessian 37! is always positive definite and in practice approximates the truth rather well according
to our experiments. If the optimization for f ends up in a saddle point or the mode is very flat, 3!
may be close to singular, which leads to problems in the implementation. In this section, we will
discuss these issues with simple examples and address the implementation in the section 4.

Consider a single observation y; = 0 from a Student-¢ distribution with a Gaussian prior for its
mean, f;. The behavior of the true posterior, the Laplace approximation, and VB as a function of
prior mean are illustrated in the upper plots of the Figure 2. The dotted lines represent the situation,
where the observation is a clear outlier in which case the posterior is very close to the prior (cf.
section 2). The solid lines represent a situation where the prior and data agree, and the dashed lines
represent a situation where the prior and data conflict moderately.

The posterior of the mean is unimodal if ¥(f;)~' = 7,2 + W(f;) > 0, for all f; € R, where 77 is
the prior variance and W ( f;) is the Hessian of the negative log likelihood at f; (see equations (3) and
(4)). With v and o fixed, W ( f;) reaches its (negative) minimum at |y;— f;| = +v/3vo, where £~ =
772 — (v +1)/(8vo?). Therefore, the posterior distribution is unimodal if 7,2 > (v + 1)/(8vo?),

or in terms of variances if Var[y;|f;, v, 0]/7? > (v +1)/(8(v — 2)) (for v > 2). It follows that the
most problematic situation for the Laplace approximation is when the prior is much wider than the

likelihood. Then in the case of a moderate conflict (|y; — fl| is close to v/3v0) the posterior may be
multimodal (see the Figure 2(a)), meaning that it is unclear whether the observation is an outlier or
not. In this case, W (f;) is negative and ¥ ~! may be close to zero, which reflects uncertainty on the
location. In the implementation this may lead to numerical problems but in practice, the problem
becomes concrete only seldom as described in the section 4.

The negative values of W relate to a decrease in the posterior precision compared to the prior preci-
sion. As long as the total precision remains positive it approximates the behavior of the true posterior
rather well. The Student-t likelihood leads to a decrease in the variance from prior to posterior only
if the prior mean and the observation are consistent with each other as shown in the Figure 2. This
behavior is not captured with the factorized VB approximation [7], where W in ¢(f |6,y ) is replaced
with a strictly positive diagonal that always increases the precision as illustrated in the Figure 2.



4 On the implementation

4.1 Posterior mode of the latent variables

The mode of the latent variables, f , can be found with general optimization methods such as the
scaled conjugate gradients. The most robust and efficient method, however, proved to be the expec-
tation maximization (EM) algorithm that utilizes the scale mixture representation of the Student-¢

distribution
vilfi ~ N(fi, Vi) (10
Vi ~ Inv-x*(v, 0?) (11)

where each observation has its own noise variance V; that is Inv-x? distributed. Following Gelman
et al. [13], p. 456 the E-step of the algorithm consists of evaluating the expectation

1 v+1
B |y [ vo| = , 12
|:Vz Y fz v U:| VUQ"‘(yi_ffld)z (12)
after which the latent variables are updated in the M-step as
£ = (K + V)TV, (13)

where V! is a diagonal matrix of the expectations in (12). In practice, we do not invert K ¢ and,
thus, f is updated using the Woodbury-Sherman-Morrison [e.g. 16] lemma

~new

f = (Kf}f - Kf)f \7_1/2B_1Vv_1/2 Kf’f)V_ly
= Kf’f a (14)

where matrix B = I+ V2 K; V~1/2. This is numerically more stable than directly inverting
the covariance matrix, and gives as an intermediate result the vector a = K;! f for later use.

4.2 Approximate marginal likelihood

Rasmussen and Williams [12] discuss a numerically stable formulation to evaluate the approximate
marginal likelihood and its gradients with a classification model. Their approach relies on W being
non-negative, for which reason it requires some modification for our setting. With the Student-¢
likelihood, we found the most stable formulation for (6) is

R 1.1 n n
logq(y |0) = logp(y[f) — 5f a— > logRii + Y logLis;, (15)
=1 =1

where R and L are the Cholesky decomposition of K¢ and X = (K}}f +W) ™!, and a is obtained
from the EM algorithm. The only problematic term is the last one, which is numerically unstable
if evaluated directly. We could evaluate first ¥ = Ky ¢ — Kfyf(wil + Kfyf)il K ¢, but this is in
many cases even worse than the direct evaluation, since W ! might have arbitrary large negative
values. For this reason, we evaluate LLT = X using a rank one Cholesky updates in a specific order.
After L is found it can also be used in the predictive variance (8) and in the gradients of (6) with
only minor modification to equations given in [12]. We write first the posterior covariance as

3 = (K%?’f +W)_1 = (K%?’f —|—e1e¥W11 + ezeEWQQ + ...ene,Tann)_l, (16)
where e; is the ¢th unit vector. The terms eieiTWii are added iteratively and the Cholesky decompo-

sition of X is updated accordingly. At the beginning L = chol(Kjy ), and at iteration step i+1 we
use the rank one Cholesky update to find

L+ = chol (L@(L(i))T - sis{di) , 17)
where s; is the ith column of () and §; = Wii(Eg))fl/((Eg))’l + Wi;). If W;; is positive we

conduct a Cholesky downdate, and if W;; < 0 and (25?)71 + W;; > 0 we have a Cholesky update
which increases the covariance. The increase may be arbitrary large if (ZE;))‘l ~ —W;;, but in



practice it can be limited. Problems arise also if W;; < 0 and (E@)_1 + W;; < 0, since then the

(23
resulting Cholesky downdate is not positive definite. This should not happen if f is at local maxima,
but in practice it may be in a saddle point or this happens because of numerical instability or the
iterative framework to update the Cholesky decomposition. The problem is prevented by adding the
diagonals in a decreasing order, that is, first the “normal” observations and last the outliers.

A single Cholesky update is analogous to the discussion in section 3.4 in that the posterior covariance
is updated using the result of the previous iteration as a prior. If we added the negative W values

at the beginning, ¥;;, (the prior variance) could be so large that either (ng))’l + Wi < 0Oor

(EEE) )~1 ~ —Wj;, in which case the posterior covariance ZEEH) could become singular or arbitrary
large and lead to problems in the later iterations (compare to the dashed black line in the Figure
2(a)). Adding first the largest W we reduce X so that negative values of W are less problematic
(compare to the dashed black line in the Figure 2(b)), and the updates are numerically more stable.

During the Cholesky updates, we cross-check with the condition (ZE?)_l +W;; > 0 that everything

is fine. If the condition is not fulfilled our code prints a warning and replaces W;; with —1/ (221(-:-)).
This ensures that the Cholesky update will remain positive definite and doubles the marginal vari-
ance instead. However, in practice we never encountered any warnings in our experiments if the
hyperparameters were initialized sensibly so that the prior was tight compared to the likelihood.

5 Relation to other work

Neal [6] implemented the Student-¢ model for the Gaussian process via Markov chain Monte Carlo
utilizing the scale mixture representation. However, the most similar approaches to the Laplace
approximation are the VB approximation [7, 11] and the one in INLA [15]. Here we will shortly
summarize them.

The difference between INLA and GP framework is that INLA utilizes Gaussian Markov random
fields (GMREF) in place of the Gaussian process. The Gaussian approximation for p(f | y, #) in INLA
is the same as the Laplace approximation here with the covariance function replaced by a precision
matrix. Rue et al. [15] derive the approximation for the log marginal posterior, log p(f]y), from

ply.£.0)  _ ply|£)p(f]0)p(6)
Q(f|‘97}’) f=f q(f|gaY) f=f
The proportionality sign is due to the fact that the normalization constant for p(f, 8| y) is unknown.

This is exactly the same as the approximation derived in the section 3.2. Taking the logarithm of
(18) we end up in log ¢(0] y) x log q(y |0) + log p(6), where log q(y |0) is given in (6).

p(0ly) = q(0]y) (18)

In the variational approximation [7], the joint posterior of the latent variables and the scale param-
eters in the scale mixture representation (10)-(11) is approximated with a factorizing distribution
p(£, V]y,0) = q(f)q(V). where q(f) = N(f |m, A) and ¢(V) = I, Inv-x*(Vy|7/2,67/2),
where § = {m, A,77,5%} are the parameters of the variational approximation. The approximate
distributions and the hyperparameters are updated in turns so that 6 are updated with current esti-
mate for 6 and after that 6 is updated with fixed 6.

The variational approximation for the conditional posterior is p(f |y,, V) ~ N(f |m, A). Here,
A= (K'f}f +V~1)~1, and the iterative search for the posterior parameters m and A is the same as
the EM algorithm described in section 4 except that the update of E [V;;l] in (12) is replaced with
E [V '] = (v+1)/(0*+ A%+ (y; —m9)?). Thus, the Laplace and the variational approximation
are very similar. In practice, the posterior mode, m, is very close to the mode f, and the main
difference between the approximations is in the covariance and the hyperparameter estimates.

In the variational approximation 6 is searched by maximizing the variational lower bound
p(y.f,V,0) ] { ply |£, V)p(£ |0)p(V]0)p(0)

V=F log =F IOg s

WV T (£ 1y, 0)a(V]y,0) |~ 70V a(f.Vly.0)

where we have made visible the implicit dependence of the approximations ¢(f) and ¢(V) to the
data and hyperparameters, and included prior for 6. The variational lower bound is similar to the ap-

19)



Table 1: The RMSE and NLP statistics on the experiments.

The RMSE error The NLP statistics
Neal Friedman Housing Concrete | Neal Friedman Housing Concrete
G 0.393 0.324 0.324 0.230 0.254 0.227 1.249 0.0642

T-lapl 0.028 0.220 0.289 0.231 -2.181 -0.16 0.080 -0.116
T-vb 0.029 0.220 0.294 0.212 -2.228 -0.049 0.091 -0.132
T-mcme | 0.055 0.253 0.287 0.197 -1.907 -0.106 0.029 -0.241

proximate log marginal posterior (18). Only the point estimate fis replaced with averaging over the
approximating distribution ¢(f, V|y,#). The other difference is that in the Laplace approximation
the scale parameters V are marginalized out and it approximates directly p(f |y, 6).

6 Experiments

We studied four data sets: 1) Neal data [6] with 100 data points and one input shown in Figure 1.
2) Friedman data with a nonlinear function of 10 inputs, from which we generated 10 data sets with
100 training points including 10 randomly selected outliers as described by Kuss [7], p. 83. 3) The
Boston housing data that summarize median house prices in Boston metropolitan area for 506 data
points and 13 input variables [7]. 4) Concrete data that summarize the quality of concrete casting as
a function of 27 variables for 215 measurements [17]. In earlier experiments, the Student-¢ model
has worked better than the Gaussian observation model in all of these data sets.

The predictive performance is measured with a root mean squared error (RMSE) and a negative
log predictive density (NLP). With simulated data these are evaluated for a test set of 1000 latent
variables. With real data we use 10-fold cross-validation. The compared observation models are
Gaussian (G) and Student-¢ (T). The Student-¢ model is inferred using the Laplace approximation
(lapl), VB (vb) [7] and full MCMC (mcmc) [6]. The Gaussian observation model, the Laplace
approximation and VB are evaluated at 0, and in MCMC we sample 6. INLA is excluded from
the experiments since GMRF model can not be constructed naturally for these non-regularly dis-
tributed data sets. The results are summarized in the Table 1. The significance of the differences in
performance is approximated using a Gaussian approximation for the distribution of the NLP and
RMSE statistics [17]. The Student-¢ model is significantly better than the Gaussian with higher than
95% probability in all other tests but in the RMSE with the concrete data. There is no significant
difference between the Laplace approximation, VB and MCMC.

The inference time was the shortest with Gaussian observation model and the longest with the
Student-¢ model utilizing full MCMC. The Laplace approximation for the Student-¢ likelihood took
in average 50% more time than the Gaussian model, and VB was in average 8-10 times slower than
the Laplace approximation. The reason for this is that in VB two sets of parameters, 6 and 6, are
updated in turns, which slows down the convergence of hyperparameters. In the Laplace approx-
imation we have to optimize only 0. Figure 3 shows the mean and the variance of p(f |6, y) for
MCMC versus the Laplace approximation and VB. The mean of the Laplace approximation and VB
match equally well the mean of the MCMC solution, but VB underestimates the variance more than
the Laplace approximation (see also the figure 2). In the housing data, both approximations under-
estimate the variance remarkably for few data points (40 of 506) that were located as clusters at
places where inputs, x are truncated along one or more dimension. At these locations, the marginal
posteriors were slightly skew and their tails were rather heavy, and thus a Gaussian approximation
presumably underestimates the variance.

The degrees of freedom of the Student-¢ likelihood were optimized only in Neal data and Boston
housing data using the Laplace approximation. In other data sets, there was not enough information
to infer v and it was set to 4. Optimizing v was more problematic for VB than for the Laplace
approximation probably because the factorized approximation makes it harder to identify v. The
MAP estimates § found by the Laplace approximation and VB were slightly different. This is
reasonable since the optimized functions (18) and (19) are also different.
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(a) Neal data (b) Friedman data (c) Boston housing data (d) Concrete data

Figure 3: Scatter plot of the posterior mean and variance of the latent variables. Upper row consists
means, and lower row variances. In each figure, left plot is for MCMC (x-axis) vs the Laplace
approximation (y-axis) and the right plot is MCMC (x-axis) vs. VB (y-axis).

7 Discussion

In our experiments we found that the predictive performance of both the Laplace approximation and
the factorial VB is similar with the full MCMC. Compared to the MCMC the Laplace approximation

and VB estimate the posterior mean E|[f |§, y] similarly but VB underestimates the posterior variance

Var[f |§, y| more than the Laplace approximation. Optimizing the hyperparameters is clearly faster
with the Laplace approximation than with VB.

Both the Laplace and the VB approximation estimate the posterior precision as a sum of a prior pre-
cision and a diagonal matrix. In VB the diagonal is strictly positive, whereas in the Laplace approx-
imation the diagonal elements corresponding to outlying observations are negative. The Laplace ap-
proximation is closer to the reality in that respect since the outlying observations have a negative ef-
fect on the (true) posterior precision. This happens because VB minimizes K L(¢(f)q(V)||p(f, V)),
which requires that the ¢(f, V') must be close to zero whenever p(f, V) is (see for example [18]).
Since a posteriori f and V are correlated, the marginal ¢(f) underestimates the effect of marginal-
izing over the scale parameters. The Laplace approximation, on the other hand, tries to estimate
directly the posterior p(f) of the latent variables. Recently, Opper and Archambeau [19] discussed
the relation between the Laplace approximation and VB, and proposed a variational approximation
directly for the latent variables and tried it with a Cauchy likelihood (they did not perform extensive
experiments though). Presumably their implementation would give better estimate for p(f) than the
factorized approximation. However, experiments on that respect are left for future.

The advantage of VB is that the objective function (19) is a rigorous lower bound for p(y |6),
whereas the Laplace approximation (18) is not. However, the marginal posteriors p(f |y, 6) in
our experiments (inferred with MCMC) were so close to Gaussian that the Laplace approximation
q(f]0,y) should be very accurate and, thus, the approximation for p(6|y) (18) should also be close
to the truth (see also justifications in [15]).

In recent years the expectation propagation (EP) algorithm [20] has been demonstrated to be very ac-
curate and efficient method for approximate inference in many models with factorizing likelihoods.
However, the Student-¢ likelihood is problematic for EP since it is not log-concave, for which rea-
son EPs estimate for the posterior covariance may become singular during the site updates [21]. The
reason for this is that the variance parameters of the site approximations may become negative. As
demonstrated with Laplace approximation here, this reflects the behavior of the true posterior. We
assume that the problem can be overcome, but we are not aware of any work that would have solved
this problem.
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