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Abstract

The relative merits of different population coding schemes have mostly been ana-
lyzed in the framework of stimulus reconstruction using Fisher Information. Here,
we consider the case of stimulus discrimination in a two alternative forced choice
paradigm and compute neurometric functions in terms of the minimal discrimina-
tion error and the Jensen-Shannon information to study neural population codes.
We first explore the relationship between minimum discrimination error, Jensen-
Shannon Information and Fisher Information and show that the discrimination
framework is more informative about the coding accuracy than Fisher Informa-
tion as it defines an error for any pair of possible stimuli. In particular, it includes
Fisher Information as a special case. Second, we use the framework to study pop-
ulation codes of angular variables. Specifically, we assess the impact of different
noise correlations structures on coding accuracy in long versus short decoding
time windows. That is, for long time window we use the common Gaussian noise
approximation. To address the case of short time windows we analyze the Ising
model with identical noise correlation structure. In this way, we provide a new
rigorous framework for assessing the functional consequences of noise correla-
tion structures for the representational accuracy of neural population codes that is
in particular applicable to short-time population coding.

1 Introduction

The relative merits of different population coding schemes have mostly been studied (e.g. [1, 12],
for a review see [2]) in the framework of stimulus reconstruction (figure 1a), where the performance
of a code is judged on the basis of the mean squared error E[(θ − θ̂)2]. That is, if a stimulus θ is
encoded by a population of N neurons with tuning curves fi, we ask how well, on average, can an
estimator reconstruct the true value of the presented stimulus based on the neural responses r, which
were generated by the density p(r|θ). The average reconstruction error can be written as

Eθ,r[(θ − θ̂(r))2] = Eθ[Varθ̂|θ] + Eθ[b2θ].

Here Varθ̂|θ = Er[(θ − θ̂(r))2|θ] denotes the error variance and bθ = Er[θ̂(r)|θ]− θ the bias of the

estimator θ̂. For the sake of analytical tractability, most studies have employed Fisher Information
(FI) (e.g. [1, 12])

Jθ =
〈
− ∂2

∂θ2
log p(r|θ)

∣∣∣∣ θ〉
to bound the conditional error variance Varθ̂|θ of an unbiased estimator from below according to the
Cramer-Rao bound:

Varθ̂|θ ≥
1
Jθ
.
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Figure 1: Illustration of the two frameworks for studying population codes. a. In stimulus reconstruction, an
estimator tries to reconstruct the orientation of a stimulus based on a noisy neural response. The quality of a
code is based on the average error of this estimator. b. In stimulus discrimination, an ideal observer needs to
choose one of two possible stimuli based on a noisy neural response (2AFC task). c. A neurometric function
shows the error E as a function of ∆θ, the difference between a reference direction θ1 and a second direction
θ2. This framework is often used in psychophysical studies.

For the comparison of different coding schemes, it is important that an estimator exists which can
actually attain this lower bound. For short time windows and certain types of tuning functions, this
may not always be the case [4]. In particular, it is unclear how different population coding schemes
affect the fidelity with which a population of binary neurons can encode a stimulus variable.

1.1 A new approach for the analysis of population coding

Here we view the population coding problem from a different perspective: We consider the case of
stimulus discrimination in a two alternative forced choice paradigm (2AFC, figure 1b) with equally
probable stimuli and compute two natural measures of coding accuracy: (1) the minimal discrimina-
tion error E(θ1, θ2) of an ideal observer classifying a stimulus s based on the response distribution as
either being θ1 or θ2 and (2) the Jensen-Shannon information IJS between the response distributions
p(r|θ1) and p(r|θ2). The minimal discrimination error is achieved by the Bayes optimal classifier
θ̂ = argmaxs p(s|r) where s ∈ {θ1, θ2} and the prior distribution p(s) = 1

2 . It is given by

E(θ1, θ2) =
∫

min (p(s = θ1, r), p(s = θ2, r)) dr

=
1
2

∫
min (p(r|θ1), p(r|θ2)) dr

(1)

and the Jensen-Shannon Information [13] is defined as

IJS(θ1, θ2) =
1
2
DKL [p(r|θ1)‖p(r)] +

1
2
DKL [p(r|θ2)‖p(r)] , (2)

where p(r) =
∑
s∈θ1,θ2 p(s)p(r|s) = 1

2 (p(r|θ1) + p(r|θ2)) is the arithmetic average between
the two densities, which in our case is the same as the marginal distribution. DKL[q1‖q2] =∫
q1(x) log q1(x)

q2(x) dx is the Kullback-Leibler divergence. IJS is an interesting measure of coding
accuracy since it directly measures the mutual information between the neural responses and the
‘class label’, i.e. the stimulus identity. By observing a population response pattern r, the uncertainty
(in terms of entropy) about the stimulus is reduced by

MI(r, s) =
∑
s

p(s)
∫
p(r|s) log

p(r|s)∑
s p(r|s)p(s)

dr = IJS,

with prior distribution as above. In the following, we will restrict our analysis to the special case
of shift-invariant population codes for angular variables and compute neurometric functions E(∆θ)
and IJS(∆θ) (figure 1c) by setting θ1 = θ and θ2 = θ + ∆θ. In the limit of large populations, the
dependence of these curves on θ can be ignored.
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Figure 2: a. Illustration of equations 5: The entropy H[E ] (black) intersects 1 − IJS (grey) at E∗ (dashed).
Because of Fano’s inequality, E > E∗. b. Functional form of the bounds in equations 4 and 5 (black). Our lower
bound is tighter than the lower bound proposed in [13] (grey). c. Illustration of the connections between the
proposed measures of coding accuracy. Minimal discrimination error E(∆θ) (red) is shown as a neurometric
curve as a function of ∆θ and is bounded in terms of the Jensen-Shannon information IJS(∆θ) via equations
4 and 5 (black). Fisher Information links to E via equation 3 and the bounds imposed by IJS (grey). This
approximation is only valid for small ∆θ. The computations have been caried out for a population of N = 50
neurons, with average correlations ρ̄ = .15 and correlation structure as in figure 3e.

1.2 Computing E and IJS

While the integrals in equation (1) and (2) often cannot be solved, they are relatively easy to evaluate
numerically using Monte-Carlo techniques [10]. For the minimal discrimination error, we use

E(∆θ) =
1
2

∫
min (p(r|θ), p(r|θ + ∆θ)) dr

≈ 1
2

M∑
i=1

min
(
p(r(i)|θ), p(r(i)|θ + ∆θ)

)
/p(r(i)),

where r(i) is one of M samples, drawn from the mixture distribution p(r) =
1
2 (p(r|θ) + p(r|θ + ∆θ)). To approximate IJS, we evaluate each DKL term separately as

DKL [p(r|θ)‖p(r)] =
∫
p(r|θ) log

p(r|θ)
p(r)

dr

≈ 1
M

M∑
i=1

log p(r(i)|θ)− log p(r(i))

where we draw samples r(i) from p(r(i)|θ). We use an analogous expression for
DKL [p(r|θ + ∆θ)‖p(r)] and plug these estimates into equation 2. This scheme provides consis-
tent estimates of the desired quantities. For all simulations below we used M = 105 samples.

2 Links between the proposed measures

In this section, we link the Fisher Information Jθ of a population code p(r|θ) to the minimum dis-
crimination error E(∆θ) and the Jensen-Shannon Information IJS(∆θ) in the 2AFC paradigm. First,
we link Fisher Information to Jensen-Shannon information IJS. Second, we bound the minimum dis-
crimination error in terms of the Jensen-Shannon information.

2.1 From Fisher Information to Jensen-Shannon Information

In order to obtain a relationship between IJS and Fisher Information, we use an expression already
derived in [7], where p(r|θ + ∆θ) is expanded up to second order in ∆θ, which yields:

IJS(∆θ) ≈
1
8

(∆θ)2Jθ. (3)
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Figure 3: Illustration of the model. Tuning functions: a. Cosine-type tuning functions with rates between 5
and 50 Hz. b. Box-like tuning function with matched minimal and maximal firing rates. Cosine tuning function
resembles the orientation tuning functions of many cortical neurons. They are characterized by approximately
constant Fisher Information independent of the stimulus orientation. Box-like tuning functions, in contrast,
have non-constant Fisher Information due to their steep non-linearity. They have been shown to exhibit superior
performance over cosine-like tuning functions with respect to the mean squared error [4]. Correlation matrices:
c. stimulus-independent, no limited range (SI, α = ∞) , d. stimulus-independent, limited range (SI, α = 2),
e. stimulus-dependent, no limited range (SD, α =∞), f. stimulus-dependent, limited range (SD, α = 2)

Therefore, Fisher Information provides a good approximation of the Jensen-Shannon Information
for sufficiently small ∆θ.

2.2 From Jensen-Shannon Information to Minimal Discrimination Error

The minimal discrimination error E(∆θ) of an ideal observer is bounded from above and below in
terms of IJS(∆θ). An upper bound derived by [13] is given by

E(∆θ) ≤ 1
2
− 1

2
IJS(∆θ). (4)

Next, we derive a new lower bound on E , which is tighter than a bound derived by Lin [13]. To this
end, we observe that from Fano’s inequality [8] it follows that

H [E ] ≥ H[s|r]− E log(|s| − 1)
= H[s|r]
= H[s]−MI[r, s]
= 1− IJS(∆θ),

(5)

where H[E ] is the entropy of a Bernoulli distribution with p = E . The equality from first to second
line follows as the number of stimuli or classes |s| = 2. Since the entropy is monotonic in E on the
interval [0, 0.5], we have the lower bound E ≥ E∗, where E∗ is chosen such that equality holds. For
an illustration, see figure 2a. The shape of both bounds, as well as Lin’s lower bound, are illustrated
in figure 2b.

In figure 2c we show the minimal discrimination error for a population code (red) together with the
upper and lower bound (black) obtained by inserting IJS(∆θ) into equations 4 and 5. Both bounds
follow nicely the neurometric function E(∆θ). For comparison, we also show the upper and lower
bound obtained by plugging Fisher Information into equation 3 and computing the bounds 4 and 5
based on this approximation of IJS(∆θ) (grey). Clearly, the approximation is valid for small ∆θ and
becomes successively worse for large ones.
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Figure 4: Comparison of box-like (red) vs. cosine (black) tuning functions in short-term population codes of a.
N = 10 b. N = 50 c. N = 250 independent neurons. Although box-like tuning functions are much broader
than cosine tuning functions, Ebox lies usually below Ecos. For the cosine case, FI (dashed, approximation as in
figure 2c and Ed′ (grey) provide accurate accounts of coding accuracy. In contrast, FI grossly overestimates the
discrimination error for box-like tuning functions in small and medium sized populations. In this case, Ed′ is
only a good approximation of E in the range where ∆θ is small (dark red). Beyond this point, it underestimates
E (a,b). For N = 250, bounds are not shown for clarity but they capture the true beaviour of E better than in
figure 4a and b.

2.3 Previous work

Only a small number of studies on neural population coding have used other measures than Fisher
Information [18, 3, 6, 4]. Two approaches are most closely related to ours: Snippe and Koenderink
[18] and Averbeck and Lee [3] used a measure analogous to the sensitivity index d′

(d′)2 = ∆µΣ−1∆µ (6)
∆µ := f(θ + ∆θ)− f(θ)

as a measure of coding accuracy. While Snippe and Koenderink have considered only the limit
∆θ → 0, Averbeck and Lee evaluated equation 6 for finite ∆θ using Σ = 1

2 (Σθ + Σθ+∆θ) and
converted d′ to a discrimination error Ed′ = 1 − erf(d′/2). This approximation is exact only if the
class conditional distribution p(r|θ) is Gaussian with fixed covariance Σθ = Σ for all ∆θ. In that
particular case, the entire neurometric function is fully determined by the Fisher Information [9]:

d′ = (∆θ)
√
Jθ = (∆θ) Jmean

Jmean is the linear part of the Fisher Information (cf. equation 7). In the general case, it is not obvious
what aspects of the quality of a population code are captured by the above measure. Therefore, both
Fisher Information and the class-conditional second-order approximation used by Averbeck and
Lee have shortcomings: The latter does not account for information originating from changes in
the covariance matrix as is quantified by Jcov (cf. equation 7). Fisher Information, on the other
hand, can be quite uninformative about the coding accuracy of the population, especially when the
tuning functions are highly nonlinear (see figure 3) or noise is large, as in these cases it is not certain
whether the Cramer-Rao bound can actually be attained [4]. The examples studied in the next
section demonstrate how these shortcomings can be overcome using the minimal discrimination
error (equation 1).

3 Results

After describing the population model used in this study, we will illustrate in a simple example, how
our proposed framework is more informative than previous approaches. Second, we will investigate
how different noise correlations structures impact population coding on different timescales.

3.1 The population model

In this section, we describe in detail the population model used in the remainder of the study. To
facilitate comparability, we closely follow the model used in a recent study by Josic et al. [12]
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where applicable. We consider a population of N neurons tuned to orientation, where the firing rate
of neuron i follows an average tuning profile fi(θ) with (a) a cosine-like shape

fi(θ) = λ1 + λ2a
k(θ − φi)

with k = 1 in section 3.2 and k = 6 in section 3.3 and a(φ) = 1
2 (1+cos(φ)) or (b) a box-like shape

fi(θ) =
(
|cos(θ − φi)|

1
j · sgn cos(θ − φi) + 1

)
· λ2

2
+ λ1.

Here, φi is the preferred orientation of neuron i and we use j = 12. We consider two scenarios:

1. Long-term coding: r(θ) ∼ N (f(θ),Σ(θ)), where the trial-to-trial fluctuations are assumed
to be normally distributed with mean f(θ) and covariance matrix Σ(θ).

2. Short-term coding: r(θ) ∼ I (f(θ),Σ(θ)), where ri ∈ {0, 1} and I(µ,Σ) is the maximum
entropy distribution consistent with the constraints provided by µ and Σ, the Ising model
[16]. That is, for short-term population coding, we assume the population acitivity to be
binary with each neuron either emitting one spike or none. The parameters of the Ising
model were computed using gradient descent on the log likelihood.

Following Josic et al. [12], we model the stimulus-dependent covariance matrix as Σij(θ) =
δijvi(θ) + (1 − δij)ρij(θ)

√
vi(θ)vj(θ), where vi(θ) is the variance of cell i and ρij(θ) the cor-

relation coefficient. For long-term coding, we set vi(θ) = fi(θ) and for short-term coding, we
set vi(θ) = fi(θ)(1 − fi(θ)). We allow for both stimulus and spatial influences on ρ by set-
ting ρij(θ) = σij(θ)c(φi − φj), where φi is the preferred orientation of neuron i. The func-
tion s models the influence of the stimulus, while the function c models the spatial component
of the correlation structure. We use σij(θ) = σi(θ)σj(θ), where σi(θ) = κ1 + κ2a

2(θ). We set
c(φi − φj) = C exp (−|φi − φj |/α), where α controls the length of the spatial decay. To obtain a
desired mean level of correlation ρ̄, we use the method described in [12].

3.2 Minimum discrimination error is more informative than Fisher Information

As has been pointed out in [4], the shape of unimodal tuning functions can strongly influence the
coding accuracy of population codes of angular variables. In particular, box-like tuning functions
can be superior to cosine tuning functions. However, numerical evaluation of the minimum mean
squared error for angular variables is much more difficult than the evaluation of the minimal dis-
crimination error proposed here, and the above claim has only been verified up to N = 20 neurons.

Here we compute the full neurometric functions for N = 10, 50, 250 binary neurons (figure 4). In
this way, we show that the advantage of box-like tuning functions also holds for large numbers of
neurons (compare red and black curves in figure 4 a-c). In addition, we note that Fisher Information
does not provide an accurate account of the performance of box-like tuning functions: it fails as soon
as the nonlinearity in the tuning functions becomes effective and overestimates the true minimal
discrimination error E . Similarly, the approximate neurometric functions Ed′(∆θ) obtained from
equation 6 do not capture the shape of neurometric functions E(∆θ) but underestimate the minimal
discrimination error. In contrast, the deviation between both curves stays rather small for cosine
tuning functions.

3.3 Stimulus-dependent correlations have opposite effects for long- and short-term
population coding

The shape of the noise covariance matrix Σθ can strongly influence the coding fidelity of a neural
population. In order to evaluate these effects it is important to take differences in the noise covariance
for different stimuli into account. In this section, we will use our new framework to study different
noise correlation structures for short- and long-term population coding.

Previous studies so far have investigated the effect of noise correlations in the long-term case: Most
studies assumed p(r|θ) to follow a multivariate Gaussian distribution, so that firing rates r|θ ∼
N (f(θ),Σ(θ)) (for detailed description of the population model see section 3.1). In this case, the
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Figure 5: Neurometric functions E(∆θ) (a-c) and IJS(∆θ) (d-f) for four different noise correlation structures.
a. and d. Large population (N = 100) and long-term coding. b. and e. Medium sized population (N = 15)
and long-term coding. The inset is a magnification for clarity. c. and f. Medium sized population (N = 15)
and short-term coding. The impact of stimulus-dependent noise correlations in the absence of limited range
correlations changes from b/e to c/f (red line). While they are beneficial in long-term coding, they are beneficial
in short-term coding only for close angles. The exact point of this transition is not the same for E and IJS, since
they are only related via the bounds described in section 2.2. Note that the scale of the x-axis varies.

FI of the population takes a particularly simple form. It can be decomposed into:

Jθ = Jmean + Jcov

Jmean = f ′>Σ−1f ′, Jcov =
1
2

Tr[Σ′Σ−1Σ′Σ−1],
(7)

where we omit the dependence on θ for clarity and f ′,Σ′ are the derivatives of f and Σ with respect
to θ. Jmean, Jcov are the Fisher information, when either only the mean or only the covariance are
assumed to depend on θ. For this case, various studies have investigated noise structures where
correlations were either uniform across the population (figure 3c) or their magnitude decayed with
difference in preferred orientations (figure 3d), ‘limited range structure’ or ‘spatial decay’, see e.g.
[1]). Only recently have stimulus-dependent correlations been analyzed in terms of Fisher informa-
tion [12]. Josic et al. find that in the absence of limited range correlations, stimulus-dependent noise
correlations (figure 3e) are beneficial for a population code, while in their presence (figure 3f), they
are detrimental.

We first compute the neurometric functions E(∆θ) and IJS(∆θ) for a population of 100 neurons
in the case of long-term coding with a Gaussian noise model for the four possible noise correlation
structures (figure 5a). We corroborate the results of Josic et al. in that we find that the lowest E or the
highest IJS is achieved for a population with stimulus-dependent noise correlations and no limited
range structure, while a population with stimulus-dependent noise correlations in the presence of
spatial decay performs worst. Spatially uniform correlations (figure 3c) provide almost as good a
code as the best coding scheme.
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Next, we directly compare long- and short-term population coding in a population of 15 neurons1.
For short-term coding, we assume that the population activity is of binary nature, i.e. each neuron
spikes at most once. Again, we compute neurometric functions E(∆θ) and IJS(∆θ) for all four
possible correlation structures. The results for long-term coding do not differ between large and
small populations (figure 5b), although relative differences between different coding schemes are
less prominent. In contrast, we find that the beneficial impact of stimulus-dependent correlations in
the absence of limited range structure reverses in short-term codes for large ∆θ (figure 5c).

4 Discussion

In this paper, we introduce the computation of neurometric functions as a new framework for study-
ing the representational accuracy of neural population codes. Importantly, it allows for a rigorous
treatment of nonlinear population codes (e.g. box-like tuning functions) and noise correlations for
non-Gaussian noise models. This is particularly important for binary population codes on timescales
where neurons fire at most one spike. Such codes are of special interest since psychophysical ex-
periments have demonstrated that efficient computations can be performed in cortex on short time
scales [19]. Previous studies have mostly focussed on long-term population codes, since in this case
it is possible to study many question analytically using Fisher Information. Although the structure
of neural population acitivity on short timescales has recently attracted much interest [16, 17, 15],
population codes for binary population activity and, in particular, the impact of different noise corre-
lation structures on such codes are not well understood. In contrast to previous work [14], neuromet-
ric function analysis allows for a comprehensive treatment of both short- and long-term population
codes in a single framework. In section 3.3, we have started to study population codes on short
timescales and found important differences in the effect of noise correlations between short- and
long-term population codes. In the future, we will extend these results to much larger populations
adapting new techniques for approximate fitting of Ising models [15].

The example discussed in section 3.2 demonstrates that neurometric functions can provide addi-
tional information compared to Fisher Information: While Fisher Information is a single number for
each potential population code, neurometric functions in terms of E or IJS assess the coding quality
for each pair of stimuli. This also enables us to detect effects like the dependence of the relative
performance of different population codes on ∆θ as shown in figure 5 c and f. We can furthermore
easily extend the framework to take unequal prior probabilities into account. In equations 1 and 2
we have assumed equal prior probabilities p(θ1) = p(θ2) = 1

2 . Both E and IJS, however, are also
well defined if this is not the case.

The framework of stimulus discrimination in a 2AFC task has long been used in psychophysical and
neurophysiological studies for measuring the accuracy of orientation coding in the visual system
(e.g. [5, 21]). It is therefore appealing to use the same framework also in theoretical investigations
on neural population coding since this facilitates the comparison with experimental data. Further-
more, it allows studying population codes for categorial variables since, in contrast to Fisher Infor-
mation, it does not require the variable of interest to be continuous. This is of advantage, as many
neurophysiological studies investigate the encoding of categories, such as objects [11] or numbers
[20].
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