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1 Proof of Proposition 1

Proposition 1 Let (uy)1<r<x and v be vectors of RN. Let A be a M x N matrix of i.i.d. el-
ements drawn from one of the previously defined distributions. For any € > 0, § > 0, for
M> 1t log %, we have, with probability at least 1 — 6, for all k < K,
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|Aug - Av — up - 0] < effug| [[v]].

Proof: 'We make use of the following lemma, which states that the random (with respect to the
choice of the matrix A) variable || Au||?> concentrates around its expectation ||u||?> when M is large.
The proof uses concentration inequalities (Cramer’s large deviation Theorem) and may be found
e.g.in[1].

Lemma 1 For any vector v in RN and any ¢ € (0, 1), we have
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To prove the proposition, we apply the lemma to any couple of vectors u + w and v — w, where u
and w are vectors of norm 1. From the parallelogram law, we have that

4Au - Aw = ||Au+ Aw||* — ||Au — Aw||?

(1 o)+ wlf? — (1 — &) lu — w]
g0+ e(|fu+ w2 + [l — w] )
du-w + 2e(||ul)? + | |w]|?) = du - w + 4de.
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fails with probability 2e ) (we applied the previous lemma twice at line 2).

Thus for each k£ < K, we have with same probability:
Auy - Av < ug - v + gl |ugl| ||v]].

Now the symmetric inequality holds with the same probability, and using a union bound for consid-
ering all (ux)r<x, we have that

|Auy, - Av — g - 0| < elfug||[v]];

holds for all k < K, with probability 1 — 4K e~M(=*/4==*/6) and the proposition follows. O



2 Proof of Proposition 2

Proposition 2 Assume that f* is (L,~)-Lipschitz (i.e. for all v € X there exists a polynomial p,, of
degree || (u) — pu(u)| < L|u - ’u|7) with 1/2 < v < p. Then setting
cn = 2"720/, we have ||at|| sup, ||o(x )H < L=y

, which is independent of N.

Proof: f* decomposes as [T = Z1gh§H > 0‘2,19"2,1 = Z1§h§H Zz(agﬁh/?cﬁl)@h,b By
Theorem 6.3 of [2], since f* is (L, ~)-Lipschitz and ¢ has at least p > ~ vanishing moments, we
have |af) ;| < L27 f1 |27 (7 +1/2) Thus we deduce:
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1<h<H 1 1<h<H

and

lp(@)]|* = Z Z B2 () ()2 < Z h
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Thus, setting ¢;, = 2(172"/4 e deduce
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ot sup le(@) < (227 [ feol)? (1= 2270)

since y > 1/2. O
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