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Abstract

We present a novel mathematical formalism for the idea of a “local model” of an
uncontrolled dynamical system, a model that makes only certain predictions in
only certain situations. As a result of its restricted responsibilities, a local model
may be far simpler than a complete model of the system. We then show how
one might combine several local models to produce a more detailed model. We
demonstrate our ability to learn a collection of local models on a large-scale ex-
ample and do a preliminary empirical comparison of learning a collection of local
models and some other model learning methods.

1 Introduction

Building models that make good predictions about the world can be a complicated task. Humans,
however, seem to have the remarkable ability to split this task up into manageable chunks. For
instance, the activity in a park may have many complex interacting components (people, dogs, balls,
etc.) and answering questions about their joint state would be impossible. It can be much simpler
to answer abstract questions like “Where will the ball bounce?” ignoring most of the detail of what
else might happen in the next moment. Some other questions like “What will the dog do?” may still
be very difficult to answer in general, as dogs are complicated objects and their behavior depends
on many factors. However, in certain situations, it may be relatively easy to make a prediction. If a
ball has just been thrown, one may reasonably predict that the dog will chase it, without too much
consideration of other potentially relevant facts. In short, it seems that humans have a lot of simple,
localized pieces of knowledge that allow them to make predictions about particular aspects of the
world in restricted situations. They can combine these abstract predictions to form more concrete,
detailed predictions. Of course, there has been substantial effort in exploiting locality/independence
structure in AIl. Much of it is focused on static domains without temporal concerns (e.g. [1]), though
these ideas have been applied in dynamical settings as well (e.g. [2, 3]). Our main contribution
is to provide a novel mathematical formulation of “local models” of dynamical systems that make
only certain predictions in only certain situations. We also show how to combine them into a more
complete model. Finally, we present empirical illustrations of the use of our local models.

1.1 Background

In this paper we will focus on learning models of uncontrolled discrete dynamical systems (we leave
consideration of controlled systems to future work). At each time step ¢ the system emits an obser-
vation o; from a finite set of observations O. We call sequences of observations fests and let 7 be
the set of all possible tests of all lengths. At time step i, the history is simply the sequence 0'0?...0"
of past observations. We use the letter ¢ to represent the null history in which no observation has yet
been emitted. A prediction of a test t = o'*1...0"*" given a history h = o'...0%, which we denote

p(t|h), is the conditional probability that the sequence ¢ will occur, given that the sequence h has

already occurred: p(t|h) & Pr(0j41 = o', ..., 0146 = 0" *|oy = 0!, ...,0; = 0'). The set of all

histories M is defined: H = {t € T : p(t|¢) > 0} U {¢}. We use models to make predictions:



Definition 1. A complete model can generate predictions p(t|h) forallt € 7 and h € H.

A model that can make every such prediction can make any conditional prediction about the system
[4]. For instance, one may want to make predictions about whether any one of a set of possible
futures will occur (e.g. “Will the man throw a ball any time before he leaves the park?”’). We can
represent this type of prediction using a union test (also called a “collective outcome” by Jaeger [5]).

Definition 2. A union test T' C 7T is a set of tests such that if ¢ € T" then no prefix of ¢ is in 7. The
prediction of a union test is a sum of predictions: p(T'|h) & > er P(E[R).

Models may be provided by an expert, or we can learn them from experience with the system (in the
form of a data set of observation sequences emitted by the system). The complexity of representing
and learning a model often depends on the complexity of the system being modeled. The measure
of complexity that we will adopt is called the linear dimension [6] and is defined as the rank of
the “system dynamics matrix” (the infinite matrix of predictions whose ;" entry is p(t;j|h;) for all
t; € T and h; € H). Itis also closely related to the number of underlying states in a Hidden Markov
Model. We will not define it more formally here but note that when we say one system is simpler
than another, we mean that it has a smaller linear dimension.

We will now present the main contributions of our work, starting by precisely defining a local model,
and then showing how they can be combined to create a more complete model.

2 Local Models

In contrast to a complete model, a local model has limited prediction responsibilities and hence
makes only certain predictions in certain situations.

Definition 3. Given a set of tests of interest T' and a set of histories of interest H!, a local model
is any model that generates the predictions of interest: p(t|h) forallt € 7! and h € H’.

We will assume, in general, that the tests of interest are union tests. In this paper, we will place a
constraint on H! C H which we will call the “semi-Markov” property, due to its close relationship
to the concept of the same name in the “options” literature [7]; this assumption will be relaxed in
future work. In words, we require that, in order to determine if the current history is of interest, we
need only look at what has happened since the preceeding history of interest. Put formally,

Definition 4. A set of histories of interest H! is semi-Markov iff h, ' € H! U{¢} and ht € H! for
some t € 7, implies that either h't € H' or p(h't|¢) = 0.

As a simple example, consider the /D Ball Bounce system (see

Figure 1). The agent observes a line of pixels, one of which EEEE EECEE
(the location of the “ball”) is black; the rest are white. The ball D

moves along the line, changing direction when it hits the edge.
Each time step, with probability 0.5, the ball sticks in place, and Figure 1: 1D Ball Bounce
with probability 0.5 it moves one square in its current direction.

One natural local model would make one-step predictions about only one pixel, p. It has two tests
of interest: the set of all one-step tests in which the pixel p is black, and the set of all one-step tests
in which p is white. All histories are of interest. This local model answers the question “What is the
chance the ball will be in pixel p next?” Note that, in order to answer this question, we need only
observe the color of the pixels neighboring p. We will refer to this example as Model A.

Another, even more restricted local model would be one that has the same tests of interest, but
whose histories of interest are only those that end with pixel p being black. This local model would
essentially answer the question “When the ball is in pixel p, what is the chance that it will stick?”
In order to make this prediction, the local model can ignore all detail; the prediction for the test of
interest is always 0.5 at histories of interest. We will refer to this local model as Model B.

In general, as in the examples above, we expect that many details about the world are irrelevant to
making the predictions of interest and could be ignored in order to simplify the local model. Taking
an approach similar to that of, e.g., Wolfe & Barto [8], Soni & Singh [9], or Talvitie et al. [10], given
tests and histories of interest, we will show how to convert a primitive observation sequence into an



abstract observation sequence that ignores unnecessary detail. A complete model of the abstracted
system can be used as a local model in the original, primitive system. The abstraction proceeds in
two steps (shown in Figure 2). First, we construct an intermediate system which makes predictions
for all tests, but only updates at histories of interest. Then we further abstract the system by ignoring
details irrelevant to making predictions for just the tests of interest.

2.1 Abstracting Details for Local Predictions

Incorporating Histories Of Interest: Intuitively, since a local model is never asked to make a
prediction at a history outside of !, one way to simplify it is to only update its predictions at
histories of interest. Essentially, it “wakes up” whenever a history of interest occurs, sees what
observation sequence happened since it was last awake, updates, and then goes dormant until the
next history of interest. We call the sequences of observations that happen between histories of
interest bridging tests. The set of bridging tests 7 Z is induced by the set of histories of interest.

Definition 5. A test t € 7 is a bridging test iff for all j < |t|, and all h € H', ht!'1] ¢ HT (where
tl1--31 denotes the j-length prefix of t) and either 3 h € H! such that ht € H' or |t| = occ.

Conceptually, we transform the primitive observa-
tion sequence into a sequence of abstract observa-  apstract Observations B, B, B, B, ..

tions in which each observation corresponds to a Bridging Test partition 1 1 1 1
bridging test. We call such a transformed sequence TE Observations b, b, b; b, ..
the Temporally Extended or T'E sequence (see Fig- Bridging Tests  —— "~

ure 2). Note that even when the primitive system has  Primitive Observations 0, 0, 030, 0505 0, 05 0, ...
a small number of observations, the T'E system can Histories of Interest $ 1t

have infinitely many, because there can be an infin-

ity of bridging tests. However, because it does not Figure 2: Mapping experience in the original
update between histories of interest, a model of T'F/ system to experience in the TE system, and

may be simpler than a model of the original system. (en to experience in the abstract system.

To see this, consider again the 1D Ball Bounce of

size k. This system has linear dimension O(2k), in-

tuitively because the ball has 2 possible directions and k possible positions. Recall Model B, that
only applies when the ball lands on a particular pixel. The bridging tests, then, are all possible ways
the ball could travel to an edge and back. The probability of each bridging test depends only on the
current direction of the ball. As such, the TE system here has linear dimension 2, regardless of k.
It is possible to show formally that the T'E' system is never more complex than the original system.

Proposition 1. [f the linear dimension of a dynamical system is n then, given a semi-Markov set of
histories of interest H!, the linear dimension of the induced TE system, npp < n.

Proof. (Sketch) The linear dimension of a system is the rank of the system dynamics matrix (SDM)
corresponding to the system [6]. The matrix corresponding to the T'E system is the submatrix of the
SDM of the original system with only columns and rows corresponding to histories and tests that are
sequences of bridging tests. A submatrix never has greater rank than the matrix that contains it. [

What good is a model of the TE system? We next show that a model of the TE system can make
predictions for all tests ¢ € 7 in all histories of interest h € H!. Specifically, we show that the
prediction for any test in a history of interest can be expressed as a prediction of a union test in
TE. For the following, note that every history of interest 4 € H’ can be written as a corresponding
sequence of bridging tests, which we will call s;,. Also, we will use the subscript T'E to distinguish
predictions prg(t|h) in TE from predictions p(t|h) in the original system.

Proposition 2. For any primitive test t € T in the original system, there is a union test Sy in TE
such that p(t|h) = prr(St|sy) forall h € HI.

Proof. We will present a constructive proof. First suppose ¢ can be written as a sequence of bridging
tests s;. Then trivially S; = {s:}. If t does not correspond to a sequence of bridging tests, we can
re-write it as the concatenation of two tests: t = t1t¢2 such that ¢; is the longest prefix of ¢ that is
a sequence of bridging tests (which may be null) and ¢, ¢ 7Z. Now, p(t|h) = p(t1|h)p(tz2|ht1),
where h, ht; € HY. We know already that p(¢;|h) = prg(s¢,|sn). To calculate p(t2|ht;) note that



there must be a set of bridging tests B;, which have ¢, as a prefix: B;, o {beThB pllt=ll = ¢},
The probability of seeing to is the probability of seeing any of the bridging tests in B,. Thus,
at the history of interest hty, p(ta|ht1) = ZbeBtz p(blht1) = ZbeBtz pre(b|snst,). So, we let

S = {s1,b: b € By, }, which gives us the result. O

Since tests of interest are union tests, to make the prediction of interest p(7'|h) for some T' € T!
and h € H' using a model of T'E, we have simply p(T'|h) = prg(St|sn) = > ,cr pre(St|sh).

A model of T'E is simpler than a complete model of the system because it only makes predictions
at histories of interest. However, it still makes predictions for all tests. We can further simplify our
modeling task by focusing on predicting the tests of interest.

Incorporating Tests of Interest: Recall Model A from our example. Since all histories are of
interest, bridging tests are single observations, and T'E is exactly equivalent to the original system.
However, note that in order to make the predictions of interest, one must only know whether the ball
is neighboring or on the pixel. So, we need only distinguish observations in which the ball is nearby,
and we can group the rest into one abstract observation: “the ball is far from the pixel.”

In general we will attempt to abstract away unnecessary details of bridging tests by aliasing bridging
tests that are equivalent with respect to making the predictions of interest. Specifically, we will
define a partition, or a many-to-one mapping, from T'E observations (the bridging tests 7 ?) to
abstract observations A. We will then use a model of the abstract system with A as its observations
(see Figure 2) as our local model. So, A must have the following properties: (1) we must be able
to express the tests of interest as a union of sequences of abstract observations in .4 and (2) an
abstracted history must contain enough detail to make accurate predictions for the tests of interest.

Let us first consider how to satisfy (1). For ease of exposition, we will discuss a special case. We
assume that tests of interest are unions of one-step tests (i.e., for any 7' € TI, T C ©O) and that
T partitions O, so every observation is contained within exactly one test of interest. One natural
example that satisfies this assumption is where the local model makes one-step predictions for a
particular dimension of a vector-valued observation. There is no fundamental barrier to treating tests
of interest that are arbitrary union tests, but the development of the general case is more complex.

Note that if a union test 7' C O, then the equivalent 7'E union test, ST, consists of every bridging

test that begins with an observation in T'. So, if 77 partitions O, then ST { Sy : T € T’} partitions
the bridging tests, 7 2, according to their first observation. As such, if we chose A = S’, or any
refinement thereof, we would satisfy criterion (1). However, S may not satisfy (2). For instance,
in our 1D Ball Bounce, in order to make accurate predictions for one pixel it does not suffice to
observe that pixel and ignore the rest. We must also distinguish the color of the neighboring pixels.
This problem was treated explicitly by Talvitie et al. [10]. They define an accurate partition:

Definition 6. An observation abstraction A is accurate with respect to T iff for any two primitive
histories k! = o'...0" and h* = o*...0"" such that Vi o’ and o* are contained within the same
abstract observation O° € A, we have p(T'|h') = p(T|h?),VT € T'.

The system we are abstracting is T'F, so the observations are bridging tests. We require an accurate
refinement of S’. Any refinement of S I satisfies criterion (1). Furthermore, an accurate refinement
is one that only aliases two histories if they result in the same predictions for the tests of interest.
Thus, we can use an abstract history to make exactly the same predictions for the tests of interest that
we would make if we had access to the primitive history. So, an accurate refinement also satisfies
criterion (2). Furthermore, an accurate refinement always exists, because the partition that distin-
guishes every observation is trivially accurate, though in general we expect to be able to abstract
away some detail. Finally, a model of the abstract system may be far simpler than a model of the
original system or the T'E system, and can be no more complex:

Proposition 3. If the linear dimension of a dynamical system is n then the linear dimension of any
local model M, nypq < nrg < n.

Proof. (Sketch) The rows and columns of the SDM corresponding to an abstraction of T'E are linear
combinations of rows and columns of the SDM of T'E [10]. So, the rank of the abstract SDM can
be no more than the rank of the SDM for T E. O]



Learning a local model: We are given tests and histories of interest and an accurate abstraction.
To learn a local model, we first translate the primitive trajectories into T'E trajectories using the
histories of interest, and then translate the T'E trajectories into abstract trajectories using the accurate
abstraction (as in Figure 2). We can then train any model on the abstracted data. In our experiments,
we use POMDPs [11], PSRs [4], and low-order Markov models as local model representations.

2.2 Combining Local Models

Consider a collection of local models M. Each local model M € M has tests of interest 7},

histories of interest 1, and is an exact model of the abstract system induced by a given accurate
def

refinement, Aj;. At any history h, the set of models M, = {M € M : h € H{M} is available
to make predictions for their tests of interest. However, we may wish to make predictions that are
not specifically of interest to any local model. In that case, we must combine the abstract, coarse
predictions made by individual models into more fine-grained joint predictions. We will make a
modeling assumption that allows us to efficiently combine the predictions of local models:

Definition 7. The local models in M}, are mutually conditionally independent, given h iff for any
subset {My, My, ..., M} € M, and any T; € ’Tl\fh,TQ € 71{127 vy Iy € ’TIk, the prediction of

the intersection is equal to the product of the predictions: p(N¥_, T;|h) = Hle p(T;i|h).

A domain expert specifying the structure of a collection of local models should strive to satisfy
this property as best as possible since, given this assumption, a collection of local models can be
used to make many more predictions than can be made by each individual model. We can compute
the predictions of finer-grained tests (intersections of tests of interest) by multiplying predictions
together. We can also compute the predictions of unions of tests of interest using the standard
formula: Pr(A U B) = Pr(A) + Pr(B) — Pr(A N B). At any history h for which M, # (), a
collection of local models can be used to make predictions for any union test that can be constructed
by unioning/intersecting the tests of interest of the models in M. This may not include all tests.
Of course making all predictions may not be practical, or necessary. A collection of local models
can selectively focus on making the most important predictions well, ignoring or approximating less
important predictions to save on representational complexity.

Of course, a collection of local models can be a complete model. For instance, note that any
model that can make the predictions p(o|h) for every o € O and h € H is a complete model.
This is because every prediction can be expressed in terms of one-step predictions: p(o'...o%|h) =
p(ot|h)p(0?|hot)...p(oF|ho...0~1). As such, if every one-step test is expressible as an intersection
of tests of interest of models in My, at every h, then M is a complete model. That said, for a given
M, the mutual conditional independence property may or may not hold. If it does not, predictions
made using M will be approximate, even if each local model in M makes its predictions of interest
exactly. It would be useful, in future work, to explore bounds on the error of this approximation.

When learning a collection of local models in this paper, we assume that tests and histories of in-
terest as well as an accurate refinement for each model are given. We then train each local model
individually on abstract data. This is a fair amount of knowledge to assume as given, though it
is analogous to providing the structure of a graphical model and learning only the distribution pa-
rameters, which is common practice. Automatically splitting a system into simple local models is
an interesting, challenging problem, and ripe ground for future research. We hope that casting the
structure learning problem in the light of our framework may illuminate new avenues to progress.

2.3 Relationship to Other Structured Representations

Here we briefly discuss a few especially relevant alternative modeling technologies that also aim to
exploit local and independence structure in dynamical systems.

DBNs: The dynamic Bayes network (DBN) [2] is a representation that exploits conditional indepen-
dence structure. The main difference between DBNs and our collection of local models is that DBNs
specify independence structure over “hidden variables” whose values are never observed. Our rep-
resentation expresses structure entirely in terms of predictions of observations. Thus our structural
assumptions can be verified using statistical tests on the data while DBN assumptions cannot be
directly verified. That said, a DBN does decompose its world state into a set of random variables. It



Table 1: Local model structure for the arcade game

HL: M applies when | 7.;: M makes one-step predic- | Ar: M additionally distinguishes

history ends with: tions for: bridging tests by:

Ball hitting brick b Color of 6 x4 pixels within b Type of special bricks hit and type of
special brick most recently hit

Ball not hitting brick b Color of 6 x4 pixels within b None

Ball in position p, coming | Absence or presence of ball color | Configuration of bricks adjacent to p

from direction d in 6 X 6 pixels around p in last step of bridging test

No brick in pixel p and no | Color of pixel p None

ball near pixel p

stores the conditional probability distribution for each variable, given the values in the previous time
step. These distributions are like local models that make one-step predictions about their variable.
For each variable, a DBN also specifies which other variables can be ignored when predicting its
next value. This is essentially our accurate refinement, which identifies details a local model can
ignore. Histories of interest are related to the concept of context-specific independence [12].

Relational Models: Relational models (e.g. [3]) treat the state of the world as a conjunction of
predicates. The state evolves using “update rules,” consisting of pre-conditions specifying when the
rule applies and post-conditions (changes to the state). Update rules are essentially local models
with pre and post-conditions playing the roles of histories and tests of interest. Relational models
typically focus on Markov worlds. We address partial observability by essentially generalizing the
“update rule.” The main strength of relational models is that they include first-order variables in
update rules, allowing for sophisticated parameter tying and generalization. We use parameter tying
in our experiments, but do not incorporate the formalism of variables into our framework.

Others: Wolfe and Singh recently introduced the Factored PSR [13] which is essentially a special
collection of local models. Also related are maximum entropy models (e.g. [14], [15]) which
represent predictions as weighted products of features of the future and the past.

3 Experimental Results

Large Scale Example: In this section we present preliminary empir-
ical results illustrating the application of collections of local models.
Our first example is a modified, uncontrolled version of an arcade game EHEEEEEHEE
(see Figure 3). The observations are 64 x 42 pixel images. In the im-

age is a 2 x 2 pixel ball and a wall of 6 x 4 pixel bricks. After the ball
hits a brick, the brick disappears. When the ball hits the bottom wall, it
bounces at a randomly selected angle. An episode ends when there are ]
no more bricks. In our version there are two types of “special bricks”  Figure 3: Arcade game
After the ball hits a dark brick, all bricks require two hits rather than

one to break. After the ball hits a light brick, all bricks require only one hit to break. When they
are first placed, bricks are regular (medium gray) with probability 0.9 and dark or light each with
probability 0.05. This system is stochastic, partially observable (and because of the special bricks,
not short-order Markov). It has roughly 1020 observations and even more underlying states.

. 7

The decomposition into local models is specified in Table 1'. Quite naturally, we have local models
to predict how the bricks (rows 1-2), the ball (row 3), and the background (row 4) will behave. This
structure satisfies the mutual conditional independence property, and since every pixel is predicted
by some model at every history, we can make fully detailed 64 x 42 pixel one-step predictions.
More or less subdivision of models could be applied, the tradeoff being the complexity of individual
models versus the total number of local models. With the structure we have selected there are ap-
proximately 25,000 local models. Of course, naively training 25,000 models is impractical. We can
improve our data efficiency and training time though parameter tying. In this system, the behavior
of objects does not depend on their position. To take advantage of this, for each type of local model

"Note: there are 30 bricks b, 2,688 pixels p, 2,183 possible positions p for the ball, and 9 possible directions
d the ball could come from, including the case in the first step, where the ball simply appears in a pixel.
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Figure 5: Left: Results for the 1D Ball Bounce problem. Error bars are omitted to avoid graph
clutter. Right: DBN structure used. All nodes are binary. The shaded nodes are hidden. Links from
“Vel.” at t — 1 to all nodes at ¢ omitted for simplicity.

(12 in total, since there is a ball model for each of the 9 directions) we combine all translated tra-
jectories associated with various positions and use them to train a single shared model. Each local
model maintains its own state, but the underlying model parameters are shared across all models of
the same type, associated with different positions. Note that position does matter in the first time
step, since the ball always appears in the same place. As a result, our model makes bad predictions
about the first time step. For clarity of presentation, we will ignore the first time-step in our results.

For the local models themselves, we used lookup table based short-order Markov representations.
Though the overall system is not short-order Markov, each local model is. Our learned local models
were first-order Markov except the one responsible for predicting what will happen to a brick when
the ball hits it. This model was second-order Markov. No local model had more than 200 states.

The learning curve for this collection of local models can be seen in
1008 Figure 4. In each trial we train the models on various numbers of
episodes (ending when there are no more bricks, or after 1000 steps)
and measure the likelihood w.r.t. 50 test episodes. We report the
average over 20 trials. Even with parameter tying, our model can
1 assign zero probability to a test sequence, due to data sparsity issues.
e The solid line shows the likelihood ratio (the log likelihood of the
# Training Trajectories true system divided by the log likelihood of our model) ignoring
the episodes that caused an infinite log likelihood. The dashed line
Figure 4: Results for the ar- shows the proportion of episodes we dropped. The likelihood ratio
cade game example. approaches 1 while the proportion of “bad” episodes approaches 0,
implying that we are learning a good model in about 100 episodes.
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Learning Comparisons: In this experiment, we will compare parameter learning results for col-
lections of local models to a few other methods on a simple example, whose complexity is easily
controlled. Recall the 1D Ball Bounce. We learned a model of the 1D Ball Bounce of size 5 and 20
using two collections of local models with no parameter tying (using PSRs and POMDPs as local
models respectively), two flat models (a PSR and a POMDP), and a DBN 2,

Both collections of local models have the following structure: for every pixel, there are two types
of model. One predicts the color of the pixel in the next time step in histories when the ball is not
in the immediate neighborhood about the pixel. This model ignores all pixels other than the one it
is predicting. The other model applies when the ball is in the pixel. It jointly predicts the colors of
the pixel and its two neighbors. This model distinguishes bridging tests in which the ball went to
the left, the right, or stayed on the pixel in the first step. This collection of local models satisfies the
mutual conditional independence property and allows prediction of primitive one-step tests.

As with the arcade game example, in each trial we trained each model on various numbers of
episodes (of length 50) and then measured their log likelihood on 1000 test episodes (also of length

2We initialized each local POMDP with 5 states and the flat POMDP with 10 and 40 states for the differ-
ent problem sizes. For the DBN we used the graphical structure shown in Figure 5(c) and trained using the
Graphical Models Toolkit [16]. We stopped EM after a maximum of 50 iterations. PSR training also has a free
parameter (see [17] for details). Via parameter sweep we chose 0.02 for local PSRs and for the flat PSR 0.175
and 0.005, respectively for the size 5 and size 20 domains.



50). We report the likelihood ratio averaged over 20 trials. The results are shown in Figure 5. The
collections of local models both perform well, outperforming the flat models (dashed lines). Both
of the flat models’ performance degrades as the size of the world increases from 5 to 20. The collec-
tions of local models are less affected by problem size. The local PSRs seem to take more data than
the local POMDPs to learn a good model, however they ultimately seem to learn a better model.
The unexpected result is that DBN training seemed to perform worse than flat POMDP training. We
have no explanation for this effect, other than the fact that different graphical structures could cause
different local extrema issues for the EM algorithm. Clearly, given these results, a more thorough
empirical comparison across a wider variety of problems is warranted.

Conclusions: We have presented a novel formalization of the idea of a “local model.” Preliminary
empirical results show that collections of local models can be learned for large-scale systems and
that the data complexity of parameter learning compares favorably to that of other representations.
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