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Abstract

We introduce a family of unsupervised algorithms, numerical taxonomy cluster-
ing, to simultaneously cluster data, and to learn a taxonomy that encodes the re-
lationship between the clusters. The algorithms work by maximizing the depen-
dence between the taxonomy and the original data. The resulting taxonomy is
a more informative visualization of complex data than simple clustering; in ad-
dition, taking into account the relations between different clusters is shown to
substantially improve the quality of the clustering, when compared with state-of-
the-art algorithms in the literature (both spectral clustering and a previous depen-
dence maximization approach). We demonstrate our algorithm on image and text
data.

1 Introduction

We address the problem of finding taxonomies in data: that is, to cluster the data, and to specify in a
systematic way how the clusters relate. This problem is widely encountered in biology, when group-
ing different species; and in computer science, when summarizing and searching over documents
and images. One of the simpler methods that has been used extensively is agglomerative clustering
[18]. One specifies a distance metric and a linkage function that encodes the cost of merging two
clusters, and the algorithm greedily agglomerates clusters, forming a hierarchy until at last the final
two clusters are merged into the tree root. A related alternate approach is divisive clustering, in
which clusters are split at each level, beginning with a partition of all the data, e.g. [19]. Unfortu-
nately, this is also a greedy technique and we generally have no approximation guarantees. More
recently, hierarchical topic models [7, 23] have been proposed to model the hierarchical cluster struc-
ture of data. These models often rely on the data being representable by multinomial distributions
over bags of words, making them suitable for many problems, but their application to arbitrarily
structured data is in no way straightforward. Inference in these models often relies on sampling
techniques that can affect their practical computational efficiency.

On the other hand, many kinds of data can be easily compared using a kernel function, which
encodes the measure of similarity between objects based on their features. Spectral clustering al-
gorithms represent one important subset of clustering techniques based on kernels [24, 21]: the
spectrum of an appropriately normalized similarity matrix is used as a relaxed solution to a partition
problem. Spectral techniques have the advantage of capturing global cluster structure of the data,
but generally do not give a global solution to the problem of discovering taxonomic structure.

In the present work, we propose a novel unsupervised clustering algorithm, numerical taxonomy
clustering, which both clusters the data and learns a taxonomy relating the clusters. Our method
works by maximizing a kernel measure of dependence between the observed data, and a product
of the partition matrix that defines the clusters with a structure matrix that defines the relationship
between individual clusters. This leads to a constrained maximization problem that is in general NP
hard, but that can be approximated very efficiently using results in spectral clustering and numerical
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taxonomy (the latter field addresses the problem fitting taxonomies to pairwise distance data [1, 2,
4, 8, 11, 15, 25], and contains techniques that allow us to efficiently fit a tree structure to our data
with tight approximation guarantees). Aside from its simplicity and computational efficiency, our
method has two important advantages over previous clustering approaches. First, it represents a
more informative visualization of the data than simple clustering, since the relationship between the
clusters is also represented. Second, we find the clustering performance is improved over methods
that do not take cluster structure into account, and over methods that impose a cluster distance
structure rather than learning it.

Several objectives that have been used for clustering are related to the objective employed here. Bach
and Jordan [3] proposed a modified spectral clustering objective that they then maximize either with
respect to the kernel parameters or the data partition. Christianini et al. [10] proposed a normalized
inner product between a kernel matrix and a matrix constructed from the labels, which can be used
to learn kernel parameters. The objective we use here is also a normalized inner product between a
similarity matrix and a matrix constructed from the partition, but importantly, we include a structure
matrix that represents the relationship between clusters. Our work is most closely related to that of
Song et al. [22], who used an objective that includes a fixed structure matrix and an objective based
on the Hilbert-Schmidt Independence Criterion. Their objective is not normalized, however, and
they do not maximize with respect to the structure matrix.

The paper is organized as follows. In Section 2, we introduce a family of dependence measures
with which one can interpret the objective function of the clustering approach. The dependence
maximization objective is presented in Section 3, and its relation to classical spectral clustering
algorithms is explained in Section 3.1. Important results for the optimization of the objective are
presented in Sections 3.2 and 3.3. The problem of numerical taxonomy and its relation to the pro-
posed objective function is presented in Section 4, as well as the numerical taxonomy clustering
algorithm. Experimental results are given in Section 5.

2 Hilbert-Schmidt Independence Criterion

In this section, we give a brief introduction to the Hilbert-Schmidt Independence Criterion (HSIC),
which is a measure of the strength of dependence between two variables (in our case, following
[22], these are the data before and after clustering). We begin with some basic terminology in kernel
methods. Let F be a reproducing kernel Hilbert space of functions from X to R, where X is a
separable metric space (our input domain). To each point x ∈ X , there corresponds an element
φ(x) ∈ F (we call φ the feature map) such that 〈φ(x), φ(x′)〉F = k(x, x′), where k : X ×X → R
is a unique positive definite kernel. We also define a second RKHS G with respect to the separable
metric space Y , with feature map ψ and kernel 〈ψ(y), ψ(y′)〉G = l(y, y′).

Let (X,Y ) be random variables on X × Y with joint distribution PrX,Y , and associated marginals
PrX and PrY . Then following [5, 12], the covariance operator Cxy : G → F is defined such that
for all f ∈ F and g ∈ G,

〈f, Cxyg〉F = Ex,y ([f(x)−Ex(f(x))] [g(y)−Ey(g(y))]) .

A measure of dependence is then the Hilbert-Schmidt norm of this operator (the sum of the squared
singular values), ‖Cxy‖2HS. For characteristic kernels [13], this is zero if and only if X and Y
are independent. It is shown in [13] that the Gaussian and Laplace kernels are characteristic on
Rd. Given a sample of size n from PrX,Y , the Hilbert-Schmidt Independence Criterion (HSIC) is
defined by [14] to be a (slightly biased) empirical estimate of ‖Cxy‖2HS,

HSIC := Tr [HnKHnL] , where Hn = I − 1
n

1n1Tn ,

1n is the n × 1 vector of ones, K is the Gram matrix for samples from PrX with (i, j)th entry
k(xi, xj), and L is the Gram matrix with kernel l(yi, yj).

3 Dependence Maximization

We now specify how the dependence criteria introduced in the previous section can be used in
clustering. We represent our data via an n × n Gram matrix M � 0: in the simplest case, this
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is the centered kernel matrix (M = HnKHn), but we also consider a Gram matrix corresponding
to normalized cuts clustering (see Section 3.1). Following [22], we define our output Gram matrix
to be L = ΠYΠT , where Π is an n × k partition matrix, k is the number of clusters, and Y is a
positive definite matrix that encodes the relationship between clusters (e.g. a taxonomic structure).
Our clustering quality is measured according to

Tr
[
MHnΠYΠTHn

]√
Tr [ΠYΠTHnΠYΠTHn]

. (1)

In terms of the covariance operators introduced earlier, we are optimizing HSIC, this being an em-
pirical estimate of ‖Cxy‖2HS, while normalizing by the empirical estimate of ‖Cyy‖2HS (we need not
normalize by ‖Cxx‖2HS, since it is constant). This criterion is very similar to the criterion introduced
for use in kernel target alignment [10], the difference being the addition of centering matrices, Hn,
as required by definition of the covariance. We remark that the normalizing term

∥∥HnΠYΠTHn

∥∥
HS

was not needed in the structured clustering objective of [22]. This is because Song et al. were in-
terested only in solving for the partition matrix, Π, whereas we also wish to solve for Y : without
normalization, the objective can always be improved by scaling Y arbitrarily. In the remainder of
this section, we address the maximization of Equation (1) under various simplifying assumptions:
these results will then be used in our main algorithm in Section 4.

3.1 Relation to Spectral Clustering

Maximizing Equation (1) is quite difficult given that the entries of Π can only take on values in
{0, 1}, and that the row sums have to be equal to 1. In order to more efficiently solve this difficult
combinatorial problem, we make use of a spectral relaxation. Consider the case that Π is a column
vector and Y is the identity matrix. Equation (1) becomes

max
Π

Tr
[
MHnΠΠTHn

]√
Tr [ΠΠTHnΠΠTHn]

= max
Π

ΠTHnMHnΠ
ΠTHnΠ

(2)

Setting the derivative with respect to Π to zero and rearranging, we obtain

HnMHnΠ =
ΠTHnMHnΠ

ΠTHnΠ
HnΠ. (3)

Using the normalization ΠTHnΠ = 1, we obtain the generalized eigenvalue problem

HnMHnΠi = ρiHnΠi, or equivalently HnMHnΠi = ρiΠi. (4)

For Π ∈ {0, 1}n×k where k > 1, we can recover Π by extracting the k eigenvectors associated
with the largest eigenvalues. As discussed in [24, 21], the relaxed solution will contain an arbitrary
rotation which can be recovered using a reclustering step.

If we choose M = D−
1
2AD−

1
2 where A is a similarity matrix, and D is the diagonal matrix such

that Dii =
∑
j Aij , we can recover a centered version of the spectral clustering of [21]. In fact, we

wish to ignore the eigenvector with constant entries [24], so the centering matrix Hn does not alter
the clustering solution.

3.2 Solving for Optimal Y � 0 Given Π

We now address the subproblem of solving for the optimal structure matrix, Y , subject only to
positive semi-definiteness, for any Π. We note that the maximization of Equation (1) is equivalent
to the constrained optimization problem

max
Y

Tr
[
MHnΠYΠTHn

]
, s.t. Tr

[
ΠYΠTHnΠYΠTHn

]
= 1 (5)

We write the Lagrangian

L(Y, ν) = Tr
[
MHnΠYΠTHn

]
+ ν

(
1− Tr

[
ΠYΠTHnΠYΠTHn

])
, (6)

take the derivative with respect to Y , and set to zero, to obtain

∂L
∂Y

= ΠTHnMHnΠ− 2ν
(
ΠTHnΠYΠTHnΠ

)
= 0 (7)
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which together with the constraint in Equation (5) yields

Y ∗ =

(
ΠTHnΠ

)†ΠTHnMHnΠ
(
ΠTHnΠ

)†√
Tr
[
ΠTHnMHnΠ (ΠTHnΠ)†ΠTHnMHnΠ (ΠTHnΠ)†

] , (8)

where † indicates the Moore-Penrose generalized inverse [17, p. 421].

Because
(
ΠTHnΠ

)†ΠTHn = Hk

(
ΠTΠ

)−1 ΠTHn (see [6, 20]), we note that Equation (8) com-
putes a normalized set kernel between the elements in each cluster. Up to a constant normalization
factor, Y ∗ is equivalent to HkỸ

∗Hk where

Ỹ ∗ij =
1

NiNj

∑
ι∈Ci

∑
κ∈Cj

M̃ικ, (9)

Ni is the number of elements in cluster i, Ci is the set of indices of samples assigned to cluster i,
and M̃ = HnMHn. This is a standard set kernel as defined in [16].

3.3 Solving for Π with the Optimal Y � 0

As we have solved for Y ∗ in closed form in Equation (8), we can plug this result into Equation (1)
to obtain a formulation of the problem of optimizing Π∗ that does not require a simultaneous opti-
mization over Y . Under these conditions, Equation (1) is equivalent to

max
Π

√
Tr
[
ΠTHnMHnΠ (ΠTΠ)−1 ΠTHnMHnΠ (ΠTΠ)−1

]
. (10)

By evaluating the first order conditions on Equation (10), we can see that the relaxed solution, Π∗,
to Equation (10) must lie in the principal subspace of HnMHn.1 Therefore, for the problem of
simultaneously optimizing the structure matrix, Y � 0, and the partition matrix, one can use the
same spectral relaxation as in Equation (4), and use the resulting partition matrix to solve for the
optimal assignment for Y using Equation (8). This indicates that the optimal partition of the data
is the same for Y given by Equation (8) and for Y = I . We show in the next section how we can
add additional constraints on Y to not only aid in interpretation, but to actually improve the optimal
clustering.

4 Numerical Taxonomy

In this section, we consolidate the results developed in Section 3 and introduce the numerical tax-
onomy clustering algorithm. The algorithm allows us to simultaneously cluster data and learn a tree
structure that relates the clusters. The tree structure imposes constraints on the solution, which in
turn affect the data partition selected by the clustering algorithm. The data are only assumed to be
well represented by some taxonomy, but not any particular topology or structure.

In Section 3 we introduced techniques for solving for Y and Π that depend only on Y being con-
strained to be positive semi-definite. In the interests of interpretability, as well as the ability to
influence clustering solutions by prior knowledge, we wish to explore the problem where additional
constraints are imposed on the structure of Y . In particular, we consider the case that Y is con-
strained to be generated by a tree metric. By this, we mean that the distance between any two
clusters is consistent with the path length along some fixed tree whose leaves are identified with the
clusters. For any positive semi-definite matrix Y , we can compute the distance matrix, D, given by
the norm implied by the inner product that computes Y , by assigning Dij =

√
Yii + Yjj − 2Yij . It

is sufficient, then, to reformulate the optimization problem given in Equation (1) to add the following
constraints that characterize distances generated by a tree metric

Dab +Dcd ≤ max (Dac +Dbd, Dad +Dbc) ∀a, b, c, d, (11)

where D is the distance matrix generated from Y . The constraints in Equation (11) are known as
the 4-point condition, and were proven in [8] to be necessary and sufficient forD to be a tree metric.

1For a detailed derivation, see the extended technical report [6].
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Optimization problems incorporating these constraints are combinatorial and generally difficult to
solve. The problem of numerical taxonomy, or fitting additive trees, is as follows: given a fixed
distance matrix, D, that fulfills metric constraints, find the solution to

min
DT

‖D −DT ‖2 (12)

with respect to some norm (e.g. L1, L2, or L∞), whereDT is subject to the 4-point condition. While
numerical taxonomy is in general NP hard, a great variety of approximation algorithms with feasible
computational complexity have been developed [1, 2, 11, 15]. Given a distance matrix that satisfies
the 4-point condition, the associated unrooted tree that generated the matrix can be found in O(k2)
time, where k is equal to the number of clusters [25].

We propose the following iterative algorithm to incorporate the 4-point condition into the optimiza-
tion of Equation (1):
Require: M � 0
Ensure: (Π, Y ) ≈ (Π∗, Y ∗) that solve Equation (1) with the constraints given in Equation (11)

Initialize Y = I
Initialize Π using the relaxation in Section 3.1
while Convergence has not been reached do

Solve for Y given Π using Equation (8)
Construct D such that Dij =

√
Yii + Yjj − 2Yij

Solve for minDT
‖D −DT ‖2

Assign Y = − 1
2Hk(DT �DT )Hk, where � represents the Hadamard product

Update Π using a normalized version of the algorithm described in [22]
end while

One can view this optimization as solving the relaxed version of the problem such that Y is only
constrained to be positive definite, and then projecting the solution onto the feasible set by requiring
Y to be constructed from a tree metric. By iterating the procedure, we can allow Π to reflect the fact
that it should best fit the current estimate of the tree metric.

5 Experimental Results

To illustrate the effectiveness of the proposed algorithm, we have performed clustering on two
benchmark datasets. The face dataset presented in [22] consists of 185 images of three different
people, each with three different facial expressions. The authors posited that this would be best
represented by a ternary tree structure, where the first level would decide which subject was repre-
sented, and the second level would be based on facial expression. In fact, their clustering algorithm
roughly partitioned the data in this way when the appropriate structure matrix was imposed. We
will show that our algorithm is able to find a similar structure without supervision, which better
represents the empirical structure of the data.

We have also included results for the NIPS 1-12 dataset,2 which consists of binarized histograms
of the first 12 years of NIPS papers, with a vocabulary size of 13649 and a corpus size of 1740.
A Gaussian kernel was used with the normalization parameter set to the median squared distance
between points in input space.

5.1 Performance Evaluation on the Face Dataset

We first describe a numerical comparison on the face dataset [22] of the approach presented in
Section 4 (where M = HnKHn is assigned as in a HSIC objective). We considered two alternative
approaches: a classic spectral clustering algorithm [21], and the dependence maximization approach
of Song et al. [22]. Because the approach in [22] is not able to learn the structure of Y from the data,
we have optimized the partition matrix for 8 different plausible hierarchical structures (Figure 1).
These have been constructed by truncating n-ary trees to the appropriate number of leaf nodes. For
the evaluation, we have made use of the fact that the desired partition of the data is known for the
face dataset, which allows us to compare the predicted clusters to the ground truth labels. For each

2The NIPS 1-12 dataset is available at http://www.cs.toronto.edu/˜roweis/data.html
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partition matrix, we compute the conditional entropy of the true labels, l, given the cluster ids, c,
H(l|c), which is related to mutual information by I(l; c) = H(l) − H(l|c). As H(l) is fixed for
a given dataset, argmaxc I(l; c) = argmincH(l|c), and H(l|c) ≥ 0 with equality only in the case
that the clusters are pure [9]. Table 1 shows the learned structure and proper normalization of our
algorithm results in a partition of the images that much more closely matches the true identities and
expressions of the faces, as evidenced by a much lower conditional entropy score than either the
spectral clustering approach of [21] or the dependence maximization approach of [22].

Figure 2 shows the discovered taxonomy for the face dataset, where the length of the edges is
proportional to the distance in the tree metric (thus, in interpreting the graph, it is important to take
into account both the nodes at which particular clusters are connected, and the distance between
these nodes; this is by contrast with Figure 1, which only gives the hierarchical cluster structure
and does not represent distance). Our results show we have indeed recovered an appropriate tree
structure without having to pre-specify the cluster similarity relations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Structures used in the optimization of [22]. The clusters are identified with leaf nodes, and
distances between the clusters are given by the minimum path length from one leaf to another. Each
edge in the graph has equal cost.

spectral a b c d e f g h taxonomy
0.5443 0.7936 0.4970 0.6336 0.8652 1.2246 1.1396 1.1325 0.5180 0.2807

Table 1: Conditional entropy scores for spectral clustering [21], the clustering algorithm of [22],
and the method presented here (last column). The structures for columns a-h are shown in Figure 1,
while the learned structure is shown in Figure 2. The structure for spectral clustering is implicitly
equivalent to that in Figure 1(h), as is apparent from the analysis in Section 3.1. Our method exceeds
the performance of [21] and [22] for all the structures.

5.2 NIPS Paper Dataset

For the NIPS dataset, we partitioned the documents into k = 8 clusters using the numerical tax-
onomy clustering algorithm. Results are given in Figure 3. To allow us to verify the clustering
performance, we labeled each cluster using twenty informative words, as listed in Table 2. The most
representative words were selected for a given cluster according to a heuristic score γ

ν−
η
τ , where γ is

the number of times the word occurs in the cluster, η is the number of times the word occurs outside
the cluster, ν is the number of documents in the cluster, and τ is the number of documents outside
the cluster. We observe that not only are the clusters themselves well defined (e.g cluster a contains
neuroscience papers, cluster g covers discriminative learning, and cluster h Bayesian learning), but
the similarity structure is also reasonable: clusters d and e, which respectively cover training and
applications of neural networks, are considered close, but distant from g and h; these are themselves
distant from the neuroscience cluster at a and the hardware papers in b; reinforcement learning gets
a cluster at f distant from the remaining topics. Only cluster c appears to be indistinct, and shows no
clear theme. Given its placement, we anticipate that it would merge with the remaining clusters for
smaller k.

6 Conclusions and Future Work

We have introduced a new algorithm, numerical taxonomy clustering, for simultaneously clustering
data and discovering a taxonomy that relates the clusters. The algorithm is based on a dependence
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Figure 2: Face dataset and the resulting taxon-
omy that was discovered by the algorithm

f

g

h

d

e

c

b

a

Figure 3: The taxonomy discovered for the NIPS
dataset. Words that represent the clusters are
given in Table 2.

a b c d e f g h
neurons chip memory network training state function data
cells circuit dynamics units recognition learning error model
model analog image learning network policy algorithm models
cell voltage neural hidden speech action functions distribution
visual current hopfield networks set reinforcement learning gaussian
neuron figure control input word optimal theorem likelihood
activity vlsi system training performance control class parameters
synaptic neuron inverse output neural function linear algorithm
response output energy unit networks time examples mixture
firing circuits capacity weights trained states case em
cortex synapse object error classification actions training bayesian
stimulus motion field weight layer agent vector posterior
spike pulse motor neural input algorithm bound probability
cortical neural computational layer system reward generalization density
frequency input network recurrent features sutton set variables
orientation digital images net test goal approximation prior
motion gate subjects time classifier dynamic bounds log
direction cmos model back classifiers step loss approach
spatial silicon associative propagation feature programming algorithms matrix
excitatory implementation attractor number image rl dimension estimation

Table 2: Representative words for the NIPS dataset clusters.

maximization approach, with the Hilbert-Schmidt Independence Criterion as our measure of depen-
dence. We have shown several interesting theoretical results regarding dependence maximization
clustering. First, we established the relationship between dependence maximization and spectral
clustering. Second, we showed the optimal positive definite structure matrix takes the form of a set
kernel, where sets are defined by cluster membership. This result applied to the original dependence
maximization objective indicates that the inclusion of an unconstrained structure matrix does not
affect the optimal partition matrix. In order to remedy this, we proposed to include constraints that
guarantee Y to be generated from an additive metric. Numerical taxonomy clustering allows us to
optimize the constrained problem efficiently.

In our experiments on grouping facial expressions, numerical taxonomy clustering is more accurate
than the existing approaches of spectral clustering and clustering with a fixed predefined structure.
We were also able to fit a taxonomy to NIPS papers that resulted in a reasonable and interpretable
clustering by subject matter. In both the facial expression and NIPS datasets, similar clusters are
close together on the resulting tree.We conclude that numerical taxonomy clustering is a useful tool
both for improving the accuracy of clusterings and for the visualization of complex data.

Our approach presently relies on the combinatorial optimization introduced in [22] in order to op-
timize Π given a fixed estimate of Y . We believe that this step may be improved by relaxing the
problem similar to Section 3.1. Likewise, automatic selection of the number of clusters is an inter-
esting area of future work. We cannot expect to use the criterion in Equation (1) to select the number
of clusters because increasing the size of Π and Y can never decrease the objective. However, the
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elbow heuristic can be applied to the optimal value of Equation (1), which is closely related to the
eigengap approach. Another interesting line of work is to consider optimizing a clustering objective
derived from the Hilbert-Schmidt Normalized Independence Criterion (HSNIC) [13].
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