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Abstract

We propose a novel bound on single-variable marginal probability distributions in
factor graphs with discrete variables. The bound is obtained by propagating local
bounds (convex sets of probability distributions) over a subtree of the factor graph,
rooted in the variable of interest. By construction, the method not only bounds
the exact marginal probability distribution of a variable, but also its approximate
Belief Propagation marginal (“belief”’). Thus, apart from providing a practical
means to calculate bounds on marginals, our contribution also lies in providing
a better understanding of the error made by Belief Propagation. We show that
our bound outperforms the state-of-the-art on some inference problems arising in
medical diagnosis.

1 Introduction

Graphical models are used in many different fields. A fundamental problem in the application of
graphical models is that exact inference is NP-hard [1]. In recent years, much research has focused
on approximate inference techniques, such as sampling methods and deterministic approximation
methods, e.g., Belief Propagation (BP) [2]. Although the approximations obtained by these meth-
ods can be very accurate, there are only few useful guarantees on the error of the approximation,
and often it is not known (without comparing with the intractable exact solution) how accurate an
approximate result is. Thus it is desirable to calculate, in addition to the approximate results, tight
bounds on the approximation error.

There exist various methods to bound the BP error [3, 4, 5, 6], which can be used, in conjunction
with the results of BP, to calculate bounds on the exact marginals. Furthermore, upper bounds on
the partition sum, e.g., [7, 8], can be combined with lower bounds on the partition sum, such as
the well-known mean field bound or higher-order lower bounds [9], to obtain bounds on marginals.
Finally, a method called Bound Propagation [10] directly calculates bounds on marginals. However,
most of these bounds (with the exception of [3, 10]) have only been formulated for the special case
of pairwise interactions, which limits their applicability, excluding for example the interesting class
of Bayesian networks.

In this contribution we describe a novel bound on exact single-variable marginals in factor graphs
which is not limited to pairwise interactions. The original motivation for this work was to better
understand and quantify the BP error. This has led to bounds which are at the same time bounds
for the exact single-variable marginals as well as for the BP beliefs. A particularly nice feature of
our bounds is that their computational cost is relatively low, provided that the number of possible
values of each variable in the factor graph is small. On the other hand, the computational complexity
is exponential in the number of possible values of the variables, which limits application to factor
graphs in which each variable has a low number of possible values. On these factor graphs however,
our bound can significantly outperform existing methods, either in terms of accuracy or in terms
of computation time (or both). We illustrate this on two toy problems and on real-world problems
arising in medical diagnosis.



The basic idea underlying our method is that we recursively propagate bounds over a particular sub-
tree of the factor graph. The propagation rules are similar to those of Belief Propagation; however,
instead of propagating messages, we propagate convex sets of messages. This can be done in such
a way that the final “beliefs” at the root node of the subtree are convex sets which contain the exact
marginal of the root node (and, by construction, also its BP belief). In the next section, we describe
our method in more detail. Due to space constraints, we have omitted the proofs and other techni-
cal details; these are provided in a technical report [11], which also reports additional experimental
results and presents an extension that uses self-avoiding-walk trees instead of subtrees (inspired by

[6D).

2 Theory

2.1 Preliminaries

Factorizing probability distributions. Let V := {1,..., N} and consider N discrete random
variables (z;);cy. Each variable x; takes values in a discrete domain X;. We will use the following

multi-index notation: let A = {i1,42,...,9m} C V with iy < ia < ...&y; We write Xy 1= X;, X
X, X -+ - x X, and for any family (Y;);ep with A C B C V, we write Y4 := (Y;,,Yi,,...,Y: ).
We consider a probability distribution over z = (z1,...,zy) € Xy that can be written as a product

of factors (1) e r:

P(z) = % I vian),  wherez= Y [] vilany). (D

IeF zEXy IEF

For each factor index I € F, there is an associated subset N; C V of variable indices and the
factor v is a nonnegative function ¢y : Xy, — [0,00). For a Bayesian network, the factors are
(conditional) probability tables. In case of Markov random fields, the factors are often called poten-
tials. In general, the normalizing constant (“partition sum”) Z is not known and exact computation
of Z is infeasible, due to the fact that the number of terms to be summed is exponential in the
number of variables N. Similarly, computing marginal distributions P(x 4 ) for subsets of variables
A C Vis intractable in general. In this article, we focus on the task of obtaining rigorous bounds on
single-variable marginals P(z;) = va\m P(z).

Factor graphs. We can represent the structure of the probability distribution (1) using a factor
graph (V, F,&). This is a bipartite graph, consisting of variable nodes i € V, factor nodes I € F,
and edges e € &, with an edge {i,I} between ¢ € V and I € F if and only if the factor 4,
depends on z; (i.e., if ¢ € Ny). We will represent factor nodes visually as rectangles and variable
nodes as circles. Figure 1(a) shows a simple example of a factor graph. The set of neighbors
of a factor node I is precisely Ny; similarly, we denote the set of neighbors of a variable node ¢ by
N; :={I € F:i € N;}. We will assume throughout this article that the factor graph corresponding
to (1) is connected.

Convexity. We denote the set of extreme points of a convex set X C R? by ext (X). For a subset
Y C R?, the convex hull of Y is defined as the smallest convex set X C R4 with Y C X; we denote
the convex hull of Y as conv (V).

Measures. For A C V, define M4 := [0, 00)¥4 as the set of nonnegative functions on X4. Each
element of M 4 can be identified with a finite measure on X 4; therefore we will call the elements
of M 4 “measures on A”. We write M?% := M4 \ {0}.

Operations on measures. Adding two measures ¥, ® € M 4 results in the measure ¥ + & in M 4.
For A, B C V, we can multiply a measure on M 4 with a measure on M p to obtain a measure
on M 4. p; a special case is multiplication with a scalar. Note that there is a natural embedding of
My in Mp for A C B C V obtained by multiplying a measure ¥ € M4 by 1p\4 € Mp\ 4,
the constant function with value 1 on X'\ 4. Another important operation is the partial summation:
given A C B CVand ¥ € Mp, define Z“ U to be the measure in M p\ 4 obtained by summing

Voverallz, € Xa,ie, >, V:izpar— D, cx, Y(Ta,7p\4)

Operations on sets of measures. We will define operations on sets of measures by applying the
operation on elements of these sets and taking the set of the resulting measures; e.g., if we have two



subsets =4 C My and =g C Mp for A, B C V), we define the product of the sets =4 and =g to be
the set of the products of elements of Z4 and Ep, i.e., EaZp = {V4Vp: ¥4 € E4,¥p € Eg}.

Completely factorized measures. For A C V), we will define Q4 to be the set of completely
factorized measures on A, i.e., Q4 = Hae 4 May. Note that M 4 is the convex hull of Q4.
Indeed, we can write each measure ¥ € M 4 as a convex combination of measures in Q4 which
are zero everywhere except at one particular value of their argument. We denote Q% := Q4 \ {0}.

Normalized (probability) measures. We denote with P4 the set of probability measures on A,
ie, Py ={¥ € My : ZIA U = 1}. The set P4 is called a simplex. Note that a simplex is
convex; the simplex P4 has precisely #(X4) extreme points, each of which corresponds to putting
all probability mass on one of the possible values of x 4. We define the normalization operator N
which normalizes measures, i.e., for U € M?* we define NT .= %\IJ with Z = E“ v,

Boxes. Let a,b € R? such that a, < b, for all components &« = 1,...,d. Then we de-
fine the box with lower bound @ and upper bound b by B(a,b) := {x € R? : a, < 2, <
b, foralla =1,...,d}. Note that a box is convex; indeed, its extreme points are the “corners” of

which there are 2¢.

Smallest bounding boxes. Let X C R be bounded. The smallest bounding box of X is defined
as B(X) := B(a,b) where the lower bound « is given by the pointwise infimum of X and the
upper bound b is given by the pointwise supremum of X, that is a, := inf{z, : ©+ € X} and
bo 1= sup{zq : x € X} forall « = 1,...,d. Note that B(X) = B (conv (X)). Therefore, if
X is convex, the smallest bounding box for X depends only on the extreme points ext (X), i.e.,
B (X) = B (ext (X)); this bounding box can be easily calculated if the number of extreme points is
not too large.

2.2 The basic tools

To calculate marginals of subsets of variables in some factor graph, several operations performed
on measures are relevant: normalization, taking products of measures, and summing over subsets of
variables. Here we study the interplay between convexity and these operations. This will turn out
to be useful later on, because our bounds make use of convex sets of measures that are propagated
over the factor graph.

The interplay between convexity and normalization, taking products and partial summation is de-
scribed by the following lemma.

Lemmal Let A CV and let = C M?. Then:
1. conv (NE) = M(conv E);
2. forall BCV, ¥ € Mp: conv (¥E) = ¥(conv Z);
3. forall BC A: conv (3, E) =3, convE. O

The next lemma concerns the interplay between convexity and taking products; it says that if we
take the product of convex sets of measures on different spaces, the resulting set is contained in the
convex hull of the product of the extreme points of the convex sets.

Lemma 2 Let (A;);=1,.. 1 be disjoint subsets of V. For eacht = 1,...,T, let £, C My, be
convex with a finite number of extreme points. Then conv (Hthl Et> = conv (HtT:1 ext Et) . O
The third lemma says that the product of several boxes on the same subset A of variables can be

easily calculated: the product of the boxes is again a box, with as lower (upper) bound the product
of the lower (upper) bounds of the boxes.

Lemma3 Let A C V and for eacht = 1,...,T, let gt,@ € My such that ¥, < U,. Then
T = T T =
IT;-. B (gb \I’t) =B (Ht:1 vy, [Ty ‘I’t)- O

We are now ready to state the basic lemma. It basically says that one can bound the marginal of
a variable by replacing a factor depending on some other variables by a product of single-variable



Figure 1: (a) Example factor graph with three variable nodes (i, j, k) and three factor nodes
(J, K, L), with probability distribution P(z;,z;, ) = %wj<$i7xj)wK($i,xk)’l/)L(.'L'j,xk); (b)
Cloning node j by adding a new variable j" and a factor 1s(x;,x;) = d5;(x;); (c) Illustration
of the bound on P(z;) based on (b): “what can we say about the range of P(xz;) when the factors
corresponding to the nodes marked with question marks are arbitrary?”’; (d) Subtree of the factor
graph; (e) Propagating convex sets of measures (boxes or simplices) on the subtree (d), leading to a
bound 5; on the marginal probability of z; in G.

factors and bounding the result. This can be exploited to simplify the computational complexity of
bounding the marginal. An example of its use will be given in the next subsection.

Lemma 4 Let A, B,C CV be mutually disjoint subsets of variables. Let V € M a,puc such that
foreachxc € Xe, > W > 0. Then:

TAUB
B(/\/’( > \IJM5>> :B<N< > q/Qg)).
TB,rC IB,rC
Proof. Note that M, is the convex hull of Qf, and apply Lemma 1. |

The positivity condition is a technical condition, which in our experience is fulfilled for many prac-
tically relevant factor graphs.

2.3 A simple example

Before proceeding to our main result, we first illustrate for a simple case how the basic lemma can
be employed to obtain computationally tractable bounds on marginals. We derive a bound for the
marginal of the variable x; in the factor graph in Figure 1(a). We start by cloning the variable x;,
i.e., adding a new variable x; that is constrained to take the same value as x;. In terms of the
factor graph, we add a variable node j’ and a factor node ¢, connected to variable nodes j and j’,
with corresponding factor 15 (x;, 2;j/) := 6., (x;); see also Figure 1(b). Clearly, the marginal of x;
satisfies:

P(zi) =N (DD wuvbrvr | =N [ DD bsbrvrds, (z;)

ZTj Tk ZTj Ij/ T

where it should be noted that the first occurrence of 1y, is shorthand for ¥, (z;, 1), but the second
occurrence is shorthand for ¢ (z;/, x). Noting that ¢5 € My ;s and applying the basic lemma

with A = {i}, B = {k}, C = {j,j'} and ¥ = 1 ;0pxc1)y, yields:

Pai) e N | SOSN wsvwv My | € BN [0S wwrvr g,

Tj Ty Tk Tj Ty T

Applying the distributive law, we obtain (see also Figure 1(c)):

P(ai) € BN [ ([ SowaMiy | | Do vw Y veMiy | .

Tj



which we relax to

]P’(m,;)GBN BN Z?/JJP{]-} BN Z@ZJKBN Zd}L,P{j’}

Zj Tk wj/

Now it may seem that this smallest bounding box would be difficult to compute. Fortunately, we
only need to compute the extreme points of these sets because of convexity. Since smallest bounding
boxes only depend on extreme points, we conclude that

P(z;) € BN [ BN | Y wsext Py | BN [ S oxBN [ S vrext Py

Tj Tk T

which can be calculated efficiently if the number of possible values of each variable is small.

2.4 The main result

The example in the previous subsection can be generalized as follows. First, one chooses a particular
subtree of the factor graph, rooted in the variable for which one wants to calculate a bound on its
marginal. Then, one propagates messages (which are either bounding boxes or simplices) over this
subtree, from the leaf nodes towards the root node. The update equations resemble those of Belief
Propagation. The resulting “belief” at the root node is a box that bounds the exact marginal of
the root node. The choice of the subtree is arbitrary; different choices lead to different bounds in
general. We now describe this “box propagation” algorithm in more detail.

Definition 5 Ler (V, F, &) be a factor graph. We call the bipartite graph (V, F, E) a subtree of
(V,F,E) withrooti ifi € VCV, F CF, E C & suchthat (V, F, E) is a tree with root i and for
all{j,J} € E,j € Vand J € F (i.e., there are no “loose edges”).! We denote the parent of j € V
according to (V, F, E) by par(j) and similarly, we denote the parent of J € F by par(J).

An illustration of a possible subtree of the factor graph in Figure 1(a) is the one shown in Figure
1(d). The bound that we will obtain using this subtree corresponds to the example described in the
previous subsection.

In the following, we will use the topology of the original factor graph (V, F, £) whenever we refer
to neighbors of variables or factors. Each edge of the subtree will carry one message, oriented such
that it “flows” towards the root node. In addition, we define messages entering the subtree for all
“missing” edges in the subtree (see also Figure 1(e)). Because of the bipartite character of the factor
graph, we can distinguish two types of messages: messages Bj_.; C M sent to a variable j € V'
from a neighboring factor J € N;, and messages B;_.; C M, sent to a factor J € F from a
neighboring variable j € N;. The messages entering the subtree are all defined to be simplices;
more precisely, we define the incoming messages

Bi;=P; forallJeF {jJ}cE\E
Bi_; =P; forallj e V,{j,J} e £\ E.

We propagate messages towards the root ¢ of the tree using the following update rules (note the
similarity with the BP update rules). The message sent from a variable j € V to its parent J =
par(j) € F is defined as

H Br—; if all incoming By _.; are boxes
Bjﬂ,] = § KeN;\J
P; if at least one of the Bg_,; is the simplex P;,

where the product of the boxes can be calculated using Lemma 3. The message sent from a factor
J € Ftoits parent k = par(J) € V is defined as

Bj—r =BN Z Yy H Bi—; | =BN Z by H extBi_; |, 2

TN \k lEN \k TN \k lEN \k

"Note that this corresponds to the notion of subtree of a bipartite graph; for a subtree of a factor graph, one
sometimes imposes the additional constraint that for all factors J € F, all its connecting edges {.J, 7} with
J € Ny have to be in E'; here we do not impose this additional constraint.



where the second equality follows from Lemmas 1 and 2. The final “belief” I3; at the root node i is
calculated by

BN Br_i if all incoming By _,; are bo

Bi _ < H K ) g 0K XES
KeN;

P; if at least one of the By _.; is the simplex P;.

We can now formulate our main result, which gives a rigorous bound on the exact single-variable
marginal of the root node:

Theorem 6 Let (V,F,E) be a factor graph with corresponding probability distribution (1). Let
it € Vand (V,F,E) be a subtree of (V,F,E) with root i € V. Apply the “box propagation”
algorithm described above to calculate the final “belief” B; on the root node i. Then P(x;) € B;.

Proof sketch The first step consists in extending the subtree such that each factor node has the
right number of neighboring variables by cloning the missing variables. The second step consists
of applying the basic lemma where the set C' consists of all the variable nodes of the subtree which
have connecting edges in £ \ E, together with all the cloned variable nodes. Then we apply the
distributive law, which can be done because the extended subtree has no cycles. Finally, we relax
the bound by adding additional normalizations and smallest bounding boxes at each factor node in
the subtree. It should now be clear that the “box propagation” algorithm described above precisely
calculates the smallest bounding box at the root node 7 that corresponds to this procedure. ]

Because each subtree of the orginal factor graph is also a subtree of the computation tree for ¢
[12], the bounds on the (exact) marginals that we just derived are at the same time bounds on the
approximate Belief Propagation marginals (beliefs):

Corollary 7 In the situation described in Theorem 6, the final bounding box B; also bounds the
(approximate) Belief Propagation marginal of the root node i, i.e., Ppp(x;) € B;. O

2.5 Related work

We briefly discuss the relationship of our bound to previous work. More details are provided in [11].

The bound in [6] is related to the bound we present here; however, the bound in [6] differs from ours
in that it (i) goes deeper into the computation tree by propagating bounds over self-avoiding-walk
(SAW) trees instead of mere subtrees, (ii) uses a different parameterization of the propagated bounds
and a different update rule, and (iii), it is only formulated for the special case of factors depending
on two variables, while it is not entirely obvious how to extend the result to more general factor
graphs.

Another method to obtain bounds on exact marginals is “Bound Propagation” [10]. The idea un-
derlying Bound Propagation is very similar to the one employed in this work, with one crucial
difference. For a variable ¢ € V), we define the sets Ai := [J N; (consisting of all variables that ap-
pear in some factor in which ¢ participates) and 97 := A \ {i} (the Markov blanket of 7). Whereas
our method uses a cavity approach, using as basis equation

P(a;) o< Y < 1T ¢1> PV(zai),  PVza)x Y. ] i

zo; \IEN; Ty\ai IEF\N;

and bound the quantity P(z;) by optimizing over P\*(x4;), the basis equation employed by Bound
Propagation is P(z;) = >_,  P(x;|2s;)P(x4;) and the optimization is over P(zp;). Unlike in our
case, the computational complexity of Bound Propagation is exponential in the size of the Markov
blanket, because of the required calculation of the conditional distribution P(x; | £5;). On the other
hand, the advantage of this approach is that a bound on P(z;) for j € 0i is also a bound on P(z4;),
which in turn gives rise to a bound on P(z;). In this way, bounds can propagate through the graphical
model, eventually yielding a new (tighter) bound on P(z9;). Although the iteration can result in
rather tight bounds, the main disadvantage of Bound Propagation is its computational cost: it is
exponential in the Markov blanket and often many iterations are needed for the bounds to become
tight.
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Figure 2: Comparisons of various methods on different factor graphs: PROMEDAS (left), a large grid
with strong interactions (middle) and a small grid with medium-strength interactions (right).

3 Experiments

In this section, we present only few empirical results due to space constraints. More details and
additional experimental results are given in [11]. We have compared different methods for calculat-
ing bounds on single-variable marginals; for each method and each variable, we calculated the gap
(tightness) of the bound, which we defined as the ¢, distance between the upper and lower bound of
the bounding box. We have investigated three different types of factor graphs; the results are shown
in Figure 2. The factor graphs used for our experiments are provided as supplementary material to
the electronic version of this article at books.nips.cc. We also plan to release the source code
of several methods as part of a new release of the approximate inference library libDAI [13]. For
our method, we chose the subtrees in a breadth-first manner.

First, we applied our bound on simulated PROMEDAS patient cases [14]. These factor graphs have
binary variables and singleton, pairwise and triple interactions (containing zeros). We generated nine
different random instances. For each instance, we calculated bounds for each “finding” variable in
that instance using our method (“BOXPROP”) and the method in [10]. Note that the tightness of
both bounds varies widely depending on the instance and on the variable of interest. Our bound was
tighter than the bound from [10] for all but one out of 1270 variables. Furthermore, whereas [10]
had only finished on 7 out of 9 instances after running for 75000 s (after which we decided to abort
the calculation on the remaining two instances), our method only needed 51 s to calculate all nine
instances.

We also compared our method with the method described in [6] on a large grid of 100 x 100 binary
(£1-valued) variables with strong interactions. Note that this is an intractable problem for exact
inference methods. The single-variable factors were chosen as exp(6;x;) with 6; ~ AN(0,1), the
pair factors were exp(6;;x;x;) with 6;; ~ N(0,1). We truncated the subtree to 400 nodes and the
SAW tree to 10° nodes. Note that our method yields the tightest bound for almost all variables.

Finally, we compared our method with several other methods referred to in Section 1 on a small
8 x 8 grid with medium-strength interactions (similarly chosen as for the large grid, but with
0; ~ N(0,0.2%) and 6;; ~ N(0,0.2%)). The small size of the grid was necessary because some
methods would need several days to handle a large grid. In this case, the method by [6] yields the
tightest bounds, followed by [10], and our method gets a third place. Note that many methods return
completely uninformative bounds in this case.

4 Conclusion and discussion

We have described a novel bound on exact single-variable marginals, which is at the same time a
bound on the (approximate) Belief Propagation marginals. Contrary to many other existing bounds,
it is formulated for the general case of factor graphs with discrete variables and factors depending on
an arbitrary number of variables. The bound is calculated by propagating convex sets of measures
over a subtree of the factor graph, with update equations resembling those of BP. For variables with
a limited number of possible values, the bounds can be computed efficiently. We have compared our
bounds with existing methods and conclude that our method belongs to the best methods, but that
it is difficult to say in general which method will yield the tightest bounds for a given variable in a



specific factor graph. Our method could be further improved by optimizing over the choice of the
subtree.

Although our bounds are a step forward in quantifying the error of Belief Propagation, the actual
error made by BP is often at least one order of magnitude lower than the tightness of these bounds.
This is due to the fact that (loopy) BP cycles information through loops in the factor graph; this
cycling apparently often improves the results. The interesting and still unanswered question is why
it makes sense to cycle information in this way and whether this error reduction effect can be quan-
tified.
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