
Sparse Online Learning via Truncated Gradient: Appendix

1 Proof of Main Results

In the setting of standard online learning, we are interested in sequential prediction problems where
for i = 1, 2, . . .:

1. An unlabeled example xi = [x1
i , . . . , x

d
i] ∈ Rd arrives.

2. We make a prediction ŷi based on the current weights wi = [w1
i , . . . , wd

i] ∈ Rd.
3. We observe yi, let zi = (xi, yi), and incur some known loss L(wi, zi) convex in parameter

wi.
4. We update weights according to some rule: wi+1 ← f(wi).

We want an update rule f that allows us to bound the sum of losses,
∑t

i=1
L(wi, zi), as well as

achieving sparsity. For this purpose, we start with the standard stochastic gradient descent (SGD)
rule, which is of the form:

f(wi) = wi − η∇1L(wi, zi), (1)

where ∇1L(a, b) is a sub-gradient of L(a, b) with respect to the first variable a. The parameter
η > 0 is often referred to as the learning rate.

In order to achieve sparsity, the most natural method is to round small coefficients (whose magni-
tudes are below a threshold θ > 0) to zero after every K online steps. That is, if i/K is not an
integer, we use the standard SGD rule (1); if i/K is an integer, we modify the rule as:

f(wi) = T0(wi − η∇1L(wi, zi), θ), (2)

where, the threshold θ ≥ 0, T0(v, θ) = [T0(v1, θ), . . . , T0(vd, θ)] for vector v = [v1, . . . , vd] ∈ Rd,
T0(vj , θ) = vjI(|vj | < θ), and I(·) is the set-indicator function.

We call the following rule truncated gradient, where the amount of shrinkage is controlled by a
gravity parameter gi > 0:

f(wi) = T1(wi − η∇1L(wi, zi), ηgi, θ), (3)

where for a vector v = [v1, . . . , vd] ∈ Rd, and a scalar g ≥ 0, T1(v, α, θ) =
[T1(v1, α, θ), . . . , T1(vd, α, θ)], with

T1(vj , α, θ) =







max(0, vj − α) if vj ∈ [0, θ]

min(0, vj + α) if vj ∈ [−θ, 0]

vj otherwise
.

Throughout the paper, we use ‖ · ‖1 for 1-norm, and ‖ · ‖ for 2-norm. For reference, we make the
following assumption regarding the loss function:
Assumption 1.1 We assume that L(w, z) is convex in w, and there exist non-negative constants A
and B such that (∇1L(w, z))2 ≤ AL(w, z) + B for all w ∈ Rd and z ∈ Rd+1.
For linear prediction problems, we have a general loss function of the form L(w, z) = φ(wT x, y).
The following are some common loss functions φ(·, ·) with corresponding choices of parameters A
and B (which are not unique), under the assumption that supx ‖x‖ ≤ C. All of them can be used for
binary classification where y ∈ ±1, but the last one is more often used in regression where y ∈ R.

• Logistic: φ(p, y) = ln(1 + exp(−py)); A = 0 and B = C2.
• SVM (hinge loss): φ(p, y) = max(0, 1− py); A = 0 and B = C2.
• Least squares (square loss): φ(p, y) = (p− y)2; A = 4C2 and B = 0.

The following lemma is the essential step in our analysis.

Lemma 1.1 For update rule (3) applied to weight vector w on example z = (x, y) with gravity
parameter gi = g, resulting in a weight vector w′. If Assumption 1.1 holds, then for all w̄ ∈ Rd, we
have

(1− 0.5Aη)L(w, z) + g‖w′ · I(|w′| ≤ θ)‖1

≤L(w̄, z) + g‖w̄ · I(|w′| ≤ θ)‖1 +
η

2
B +

‖w̄ − w‖2 − ‖w̄ − w′‖2

2η
.

1

PROOF. Consider any target vector w̄ ∈ Rd and let w̃ = w − η∇1L(w, z). We have w′ =
T1(w̃, gη, θ). Let

u(w̄, w′) = g‖w̄ · I(|w′| ≤ θ)‖1 − g‖w′ · I(|w′| ≤ θ)‖1.

Then the update equation implies the following:

‖w̄ − w′‖2

≤‖w̄ − w′‖2 + ‖w′ − w̃‖2

=‖w̄ − w̃‖2 − 2(w̄ − w′)T (w′ − w̃)

≤‖w̄ − w̃‖2 + 2ηu(w̄, w′)

=‖w̄ − w‖2 + ‖w − w̃‖2 + 2(w̄ − w)T (w − w̃) + 2ηu(w̄, w′)

=‖w̄ − w‖2 + η2‖∇1L(w, z)‖2 + 2η(w̄ − w)T∇1L(w, z) + 2ηu(w̄, w′)

≤‖w̄ − w‖2 + η2‖∇1L(w, z)‖2 + 2η(L(w̄, z)− L(w, z)) + 2ηu(w̄, w′)

≤‖w̄ − w‖2 + η2(AL(w, z) + B) + 2η(L(w̄, z)− L(w, z)) + 2ηu(w̄, w′).

Here, the first and second equalities follow from algebra, and the third from the definition of w̃.
The first inequality follows because a square is always non-negative. The second inequality follows
because w′ = T1(w̃, gη, θ), which implies that (w′ − w̃)T w′ = −gη‖w′ · I(|w′| ≤ θ)‖1 and
|w′

j − w̃j | ≤ gηI(|w′

j | ≤ θ). Therefore

−(w̄ − w′)T (w′ − w̃) =− w̄T (w′ − w̃) + w′T (w′ − w̃)

≤

d
∑

j=1

|w̄j ||w
′

j − w̃j |+ (w′ − w̃)T w′

≤gη

d
∑

j=1

|w̄j |I(|w′

j | ≤ θ) + (w′ − w̃)T w′ = ηu(w̄, w′).

The third inequality follows from the definition of sub-gradient of a convex function, which implies
that

(w̄ − w)T∇1L(w, z) ≤ L(w̄, z)− L(w, z)

for all w and w̄. The fourth inequality follows from Assumption 1.1. Rearranging the above in-
equality leads to the desired bound. �

Our main result is Theorem 1.1 that is parameterized by A and B. Specializing it to particular loss
functions yields several corollaries.

Theorem 1.1 (Sparse Online Regret) Consider sparse online update rule (3) with w1 = [0, . . . , 0]
and η > 0. If Assumption 1.1 holds, then for all w̄ ∈ Rd we have

1 − 0.5Aη

T

T
X

i=1

»

L(wi, zi) +
gi

1 − 0.5Aη
‖wi+1 · I(wi+1 ≤ θ)‖1

–

≤
η

2
B+

‖w̄‖2

2ηT
+

1

T

T
X

i=1

[L(w̄, zi)+gi‖w̄·I(wi+1 ≤ θ)‖1],

where I(·) is the set-indicator function and for vectors v = [v1, . . . , vd] and v′ = [v′

1, . . . , v
′

d], we
let

‖v · I(|v′| ≤ θ)‖1 =
d

∑

j=1

|vj |I(|v′

j | ≤ θ).

PROOF. Apply Lemma 1.1 to the update on trial i, we have

(1− 0.5Aη)L(wi, zi) + gi‖wi+1 · I(|wi+1| ≤ θ)‖1

≤L(w̄, zi) +
‖w̄ − wi‖

2 − ‖w̄ − wi+1‖
2

2η
+ gi‖w̄ · I(|wi+1| ≤ θ)‖1 +

η

2
B.

2

Now summing over i = 1, 2, . . . , T , we obtain

T
∑

i=1

[(1− 0.5Aη)L(wi, zi) + gi‖wi+1 · I(|wi+1| ≤ θ)‖1]

≤
T

∑

i=1

[

‖w̄ − wi‖
2 − ‖w̄ − wi+1‖

2

2η
+ L(w̄, zi) + gi‖w̄ · I(|wi+1| ≤ θ)‖1 +

η

2
B

]

=
‖w̄ − w1‖

2 − ‖w̄ − wT ‖
2

2η
+

η

2
TB +

T
∑

i=1

[L(w̄, zi) + gi‖w̄ · I(|wi+1| ≤ θ)‖1]

≤
‖w̄‖2

2η
+

η

2
TB +

T
∑

i=1

[L(w̄, zi) + gi‖w̄ · I(|wi+1| ≤ θ)‖1].

The first equality follows from the telescoping sum and the second inequality follows from the initial
condition (all weights are zero) and dropping negative quantities. The theorem follows by dividing
with respect to T and rearranging terms. �

Theorem 1.2 (Stochastic Setting) Consider a set of training data zi = (xi, yi) for i = 1, . . . , n,
and let

R(w, g) =
1

n

n
∑

i=1

L(w, zi) + g‖w‖1

be the L1-regularized loss over training data. Let ŵ1 = w1 = 0, and define recursively for t =
1, 2, . . .

wt+1 = T (wt − η∇1(wt, zit
), gη), ŵt+1 = ŵt + (wt+1 − ŵt)/(t + 1),

where each it is drawn from {1, . . . , n} uniformly at random. If Assumption 1.1 holds, then for all
T and w̄ ∈ Rd:

E

[

(1− 0.5Aη)R

(

ŵT ,
g

1− 0.5Aη

)]

≤ E

[

1− 0.5Aη

T

T
∑

i=1

R

(

wi,
g

1− 0.5Aη

)

]

≤
η

2
B+
‖w̄‖2

2ηT
+R(w̄, g).

PROOF. Note that the recursion of ŵt implies that

ŵT =
1

T

T
∑

t=1

wt

from telescoping the update rule.

Because R(w, g) is convex in w, the first inequality follows directly from Jensen’s inequality.

In the following we only need to prove the second inequality. Theorem 1.1 implies the following:

1− 0.5Aη

T

T
∑

t=1

[

L(wt, zit
) +

g

1− 0.5Aη
‖wt‖1

]

≤ g‖w̄‖1 +
η

2
B +

‖w̄‖2

2ηT
+

1

T

T
∑

t=1

L(w̄, zit
).

(4)

Observe that

Eit

[

L(wt, zit
) +

g

1− 0.5Aη
‖wt‖1

]

= R

(

wt,
g

1− 0.5Aη

)

and

g‖w̄‖1 + Ei1,...,iT

[

1

T

T
∑

t=1

L(w̄, zit
)

]

= R(w̄, g).

The second inequality is obtained by taking the expectation with respect to Ei1,...,iT
in (4). �

3

2 Truncated Gradient for Least-Squares Regression

The truncated descent update rule (3) can be applied to least-squares regression using square loss,
leading to

f(wi) = T1(wi − η(yi − ŷi)xi, ηgi, θ),

where the prediction is given by ŷi =
∑

j wj
i x

j
i . A complete algorithm description is given in the

appendix.

This leads to Algorithm 1 which implements sparsification for square loss using truncated gradient.
In the description, we use superscripted symbol wj to denote the j-th component of vector w (in
order to differentiate from wi, which we have used to denote the i-th weight vector). For clarity, we
also drop the index i from wi. Although we keep the choice of gravity parameters gi open in the
algorithm description, in practice, we only consider the following choice:

gi =

{

Kg if i/K is an integer
0 otherwise

.

Algorithm 1 Truncated Gradient
Inputs:

• threshold θ ≥ 0

• gravity sequence gi ≥ 0

• learning rate η ∈ (0, 1)

• example oracle O
initialize weights wj ← 0 (j = 1, . . . , d)
for trial i = 1, 2, . . .

1. Acquire an unlabeled example x = [x1, x2, . . . , xd] from oracle O
2. forall weights wj (j = 1, . . . , d)

(a) if wj > 0 and wj ≤ θ then wj ← max{wj − giη, 0}

(b) elseif wj < 0 and wj ≥ −θ then wj ← min{wj + giη, 0}

3. Compute prediction: ŷ =
∑

j wjxj

4. Acquire the label y from oracle O
5. Update weights for all features j: wj ← wj + 2η(y − ŷ)xj

In many online-learning situations (such as web applications), only a small subset of the features
have nonzero values for any example x. It is thus desirable to deal with sparsity only in this small
subset rather than all features, while simultaneously inducing sparsity on all feature weights. More-
over, it is important to store only features with non-zero coefficients (if the number of features is so
large that it cannot be stored in memory, this approach allows us to use a hashtable to track only the
nonzero coefficients). We describe how this can be implemented efficiently in the next section.

For reference, we present a specialization of Theorem 1.1 in the following corollary for least-squares
regression:

Corollary 2.1 (Sparse Online Regret for Square Loss) Consider truncated gradient with square
loss. If there exists C > 0 such that ‖x‖ ≤ C for all x, then for all w̄ ∈ Rd, we have

1 − 2C2η

T

T
X

i=1

»

(wT

i xi − yi)
2 +

gi

1 − 2C2η
‖wi · I(|wi| ≤ θ)‖1

–

≤
‖w̄‖2

2ηT
+

1

T

T
X

i=1

h

(w̄T
xi − yi)

2 + gi+1‖w̄ · I(|wi+1| ≤ θ)‖1

i

.

This corollary explicitly states that the average per-example square loss incurred by the learner (left
term) is bounded by the average square loss of the best weight vector w̄, plus a term related to the
size of w̄ which decays as 1/T and an additive offset controlled by the sparsity threshold θ and the
gravity parameter gi.

4

3 Efficient Implementation

We altered an efficient SGD implementation for least-squares regression according to truncated
gradient. It optimizes square loss on a linear representation w · x via (1) with a couple caveats:

1. The prediction is normalized by the square root of the number of nonzero entries in a sparse
vector, w · x/|x|0.5

0 . This alteration is just a constant rescaling on dense vectors which is
effectively removable by an appropriate rescaling of the learning rate.

2. The prediction is clipped to the interval [0, 1], implying that the loss function is not square
loss for unclipped predictions outside of this dynamic range. Instead the update is a con-
stant value, equivalent to the gradient of a linear loss function.

The learning rate is controllable, supporting 1/i decay as well as a constant learning rate (and rates
in-between). The program operates in an entirely online fashion. Features are hashed instead of
being stored explicitly, and weights can be easily inserted into or deleted from the table dynamically.
So the memory footprint is essentially just the number of nonzero weights, even when the numbers
of data and features are very large.

In many online-learning situations such as web applications, only a small subset of the features
have nonzero values for any example x. It is thus desirable to deal with sparsity only in this small
subset rather than in all features, while simultaneously inducing sparsity on all feature weights. The
approach we took was to store a time-stamp τj for each feature j. The time-stamp was initialized to
the index of the example where feature j was nonzero for the first time. During online learning, we
simply went through all nonzero features j of example i, and could “simulate” the shrinkage of wj

after τj in a batch mode. Specifically, instead of using update rule (3) for weight wj , we shrunk the
weights of all nonzero feature j differently by the following:

f(wj) = T1

(

wj + 2η(y − ŷ)xj ,

⌊

i− τj

K

⌋

Kηg, θ

)

,

and τj is updated by

τj ← τj +

⌊

i− τj

K

⌋

K.

In the coefficient rounding algorithm (2), for instance, for each nonzero feature j of example i, we
can first perform a regular gradient descent on the square loss, and then do the following: if |wj | is
below the threshold θ and i ≥ τj + K, we round wj to 0 and set τj to i.

This implementation shows that the truncated gradient method satisfies the following requirements
needed for solving large scale problems with sparse features.

• The algorithm is computationally efficient: the number of operations per online step is
linear in the number of nonzero features, and independent of the total number of features.

• The algorithm is memory efficient: it maintains a list of active features, and a feature can
be inserted when observed, and deleted when the corresponding weight becomes zero.

4 Dataset Summary

The datasets used in our experiments are summarized in Table 1.

5

Table 1: Dataset Summary.

Dataset #features #train data #test data task
ad 1411 2455 824 classification
crx 47 526 164 classification

housing 14 381 125 regression
krvskp 74 2413 783 classification

magic04 11 14226 4794 classification
mushroom 117 6079 2045 classification
spambase 58 3445 1156 classification

wbc 10 520 179 classification
wdbc 31 421 148 classification
wpbc 33 153 45 classification
zoo 17 77 24 regression
rcv1 38853 781265 23149 classification

Big_Ads 3× 109 26× 106 2.7× 106 classification

6

