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Abstract

We propose new families of models and algorithms for high-dimensional nonpara-
metric learning with joint sparsity constraints. Our approach is based on a regular-
ization method that enforces common sparsity patterns across different function
components in a nonparametric additive model. The algorithms employ a coor-
dinate descent approach that is based on a functional soft-thresholding operator.
The framework yields several new models, including multi-task sparse additive
models, multi-response sparse additive models, and sparse additive multi-category
logistic regression. The methods are illustrated with experiments on synthetic data
and gene microarray data.

1 Introduction

Many learning problems can be naturally formulated in terms of multi-category classification or
multi-task regression. In a multi-category classification problem, it is required to discriminate be-
tween the different categories using a set of high-dimensional feature vectors—for instance, clas-
sifying the type of tumor in a cancer patient from gene expression data. In a multi-task regression
problem, it is of interest to form several regression estimators for related data sets that share common
types of covariates—for instance, predicting test scores across different school districts. In other ar-
eas, such as multi-channel signal processing, it is of interest to simultaneously decompose multiple
signals in terms of a large common overcomplete dictionary, which is a multi-response regression
problem. In each case, while the details of the estimators vary from instance to instance, across
categories, or tasks, they may share a common sparsity pattern of relevant variables selected from a
high-dimensional space. How to find this common sparsity pattern is an interesting learning task.

In the parametric setting, progress has been recently made on such problems using regularization
based on the sum of supremum norms (Turlach et al., 2005; Tropp et al., 2006; Zhang, 2006). For
example, consider the K-task linear regression problem y

(k)
i = β

(k)
0 +

∑p
j=1 β

(k)
j x

(k)
ij + ϵ

(k)
i where

the superscript k indexes the tasks, and the subscript i = 1, . . . , nk indexes the instances within a
task. Using quadratic loss, Zhang (2006) suggests the following estimator

β̂ = arg min
β


K∑

k=1

 1
2nk

nk∑
i=1

y
(k)
i − β

(k)
0 −

p∑
j=1

β
(k)
j x

(k)
ij

2
+ λ

p∑
j=1

max
k

|β(k)
j |

 (1)

where maxk |β(k)
j | = ∥βj∥∞ is the sup-norm of the vector βj ≡ (β(1)

j , . . . , β
(K)
j )T of coefficients

for the jth feature across different tasks. The sum of sup-norms regularization has the effect of
“grouping” the elements in βj such that they can be shrunk towards zero simultaneously. The
problems of multi-response (or multivariate) regression and multi-category classification can be
viewed as a special case of the multi-task regression problem where tasks share the same design
matrix. Turlach et al. (2005) and Fornasier and Rauhut (2008) propose the same sum of sup-norms
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regularization as in (1) for such problems in the linear model setting. In related work, Zhang et al.
(2008) propose the sup-norm support vector machine, demonstrating its effectiveness on gene data.

In this paper we develop new methods for nonparametric estimation for such multi-task and multi-
category regression and classification problems. Rather than fitting a linear model, we instead esti-
mate smooth functions of the data, and formulate a regularization framework that encourages joint
functional sparsity, where the component functions can be different across tasks while sharing a
common sparsity pattern. Building on a recently proposed method called sparse additive models,
or “SpAM” (Ravikumar et al., 2007), we propose a convex regularization functional that can be
viewed as a nonparametric analog of the sum of sup-norms regularization for linear models. Based
on this regularization functional, we develop new models for nonparametric multi-task regression
and classification, including multi-task sparse additive models (MT-SpAM), multi-response sparse
additive models (MR-SpAM), and sparse multi-category additive logistic regression (SMALR).

The contributions of this work include (1) an efficient iterative algorithm based on a functional
soft-thresholding operator derived from subdifferential calculus, leading to the multi-task and multi-
response SpAM procedures, (2) a penalized local scoring algorithm that corresponds to fitting a
sequence of multi-response SpAM estimates for sparse multi-category additive logistic regression,
and (3) the successful application of this methodology to multi-category tumor classification and
biomarker discovery from gene microarray data.

2 Nonparametric Models for Joint Functional Sparsity

We begin by introducing some notation. If X has distribution PX , and f is a function of x, its
L2(PX) norm is denoted by ∥f∥2 =

∫
X f2(x)dPX = E(f2). If v = (v1, . . . , vn)T is a vector, de-

fine ∥v∥2
n = 1

n

∑n
j=1 v2

j and ∥v∥∞ = maxj |vj |. For a p-dimensional random vector (X1, . . . , Xp),
let Hj denote the Hilbert subspace L2(PXj ) of PXj -measurable functions fj(xj) of the single scalar
variable Xj with zero mean, i.e. E[fj(Xj)] = 0. The inner product on this space is defined as
⟨fj , gj⟩ = E [fj(Xj)gj(Xj)]. In this paper, we mainly study multivariate functions f(x1, . . . , xp)
that have an additive form, i.e., f(x1, . . . , xp) = α +

∑
j fj(xj), with fj ∈ Hj for j = 1, . . . , p.

With H ≡ {1} ⊕H1 ⊕H2 ⊕ . . . ⊕Hp denoting the direct sum Hilbert space, we have that f ∈ H.

2.1 Multi-task/Multi-response Sparse Additive Models

In a K-task regression problem, we have observations {(x(k)
i , y

(k)
i ), i = 1, . . . , nk, k = 1, . . . ,K},

where x
(k)
i = (x(k)

i1 , . . . , x
(k)
ip )T is a p-dimensional covariate vector, the superscript k indexes tasks

and i indexes the i.i.d. samples for each task. In the following, for notational simplicity, we assume
that n1 = . . . = nK = n. We also assume different tasks are comparable and each Y (k) and
X

(k)
j has been standardized, i.e., has mean zero and variance one. This is not really a restriction

of the model since a straightforward weighting scheme can be adopted to extend our approach to
handle noncomparable tasks. We assume the true model is E

(
Y (k) |X(k) = x(k)

)
= f (k)(x(k)) ≡∑p

j=1 f
(k)
j (x(k)

j ) for k = 1, . . . ,K, where, for simplicity, we take all intercepts α(k) to be zero. Let
Qf(k)(x, y) = (y − f (k)(x))2 denote the quadratic loss. To encourage common sparsity patterns
across different function components, we define the regularization functional ΦK(f) by

ΦK(f) =
p∑

j=1

max
k=1,...,K

∥f (k)
j ∥. (2)

The regularization functional ΦK(f) naturally combines the idea of the sum of sup-norms penalty
for parametric joint sparsity and the regularization idea of SpAM for nonparametric functional spar-
sity; if K = 1, then Φ1(f) is just the regularization term introduced for (single-task) sparse additive
models by Ravikumar et al. (2007). If each f

(k)
j is a linear function, then ΦK(f) reduces to the

sum of sup-norms regularization term as in (1). We shall employ ΦK(f) to induce joint functional
sparsity in nonparametric multi-task inference.
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Using this regularization functional, the multi-task sparse additive model (MT-SpAM) is formulated
as a penalized M-estimator, by framing the following optimization problem

f̂ (1), . . . , f̂ (K) = arg min
f(1),...,f(K)

{
1
2n

n∑
i=1

K∑
k=1

Qf(k)(x(k)
i , y

(k)
i ) + λΦK(f)

}
(3)

where f
(k)
j ∈ H(k)

j for j = 1, . . . , p and k = 1, . . . , K, and λ > 0 is a regularization parameter.
The multi-response sparse additive model (MR-SpAM) has exactly the same formulation as in (3)
except that a common design matrix is used across the K different tasks.

2.2 Sparse Multi-Category Additive Logistic Regression

In a K-category classification problem, we are given n examples (x1, y1), . . . , (xn, yn) where xi =
(xi1, . . . , xip)T is a p-dimensional predictor vector and yi = (y(1)

i , . . . , y
(K−1)
i )T is a (K − 1)-

dimensional response vector in which at most one element can be one, with all the others being
zero. Here, we adopt the common “1-of-K” labeling convention where y

(k)
i = 1 if xi has category

k and y
(k)
i = 0 otherwise; if all elements of yi are zero, then xi is assigned the K-th category.

The multi-category additive logistic regression model is

P(Y (k) = 1 |X = x) =
exp

(
f (k)(x)

)
1 +

∑K−1
k′=1 exp

(
f (k′)(x)

) , k = 1, . . . ,K − 1 (4)

where f (k)(x) = α(k) +
∑p

j=1 f
(k)
j (xj) has an additive form. We define f = (f (1), . . . , f (K−1)) to

be a discriminant function and p
(k)
f (x) = P(Y (k) = 1 |X = x) to be the conditional probability of

category k given X = x. The logistic regression classifier hf (·) induced by f , which is a mapping
from the sample space to the category labels, is simply given by hf (x) = arg maxk=1,...,K p

(k)
f (x).

If a variable Xj is irrelevant, then all of the component functions f
(k)
j are identically zero, for each

k = 1, 2, . . . ,K − 1. This motivates the use of the regularization functional ΦK−1(f) to zero out
entire vectors fj = (f (1)

j , . . . , f
(K−1)
j ).

Denoting

ℓf (x, y) =
K−1∑
k=1

y(k)f (k)(x) − log

(
1 +

K−1∑
k′=1

exp f (k′)(x)

)
as the multinomial log-loss, the sparse multi-category additive logistic regression estimator
(SMALR) is thus formulated as the solution to the optimization problem

f̂ (1), . . . , f̂ (K−1) = arg min
f(1),...,f(K−1)

{
− 1

n

n∑
i=1

ℓf (xi, yi) + λΦK−1(f)

}
(5)

where f
(k)
j ∈ H(k)

j for j = 1, . . . , p and k = 1, . . . , K − 1.

3 Simultaneous Sparse Backfitting

We use a blockwise coordinate descent algorithm to minimize the functional defined in (3). We first
formulate the population version of the problem by replacing sample averages by their expectations.
We then derive stationary conditions for the optimum and obtain a population version algorithm for
computing the solution by a series of soft-thresholded univariate conditional expectations. Finally,
a finite sample version of the algorithm can be derived by plugging in nonparametric smoothers for
these conditional expectations.

For the jth block of component functions f
(1)
j , . . . , f

(K)
j , let R

(k)
j = Y (k) −

∑
l ̸=j f

(k)
l (X(k)

l ) de-
note the partial residuals. Assuming all but the functions in the jth block to be fixed, the optimization
problem is reduced to

f̂
(1)
j , . . . , f̂

(K)
j = arg min

f
(1)
j ,...,f

(K)
j

{
1
2

E

[
K∑

k=1

(
R

(k)
j − f

(k)
j (X(k)

j )
)2
]

+ λ max
k=1,...,K

∥f (k)
j ∥

}
. (6)
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The following result characterizes the solution to (6).

Theorem 1. Let P
(k)
j = E

(
R

(k)
j |X(k)

j

)
and s

(k)
j = ∥P (k)

j ∥, and order the indices according to

s
(k1)
j ≥ s

(k2)
j ≥ . . . ≥ s

(kK)
j . Then the solution to (6) is given by

f
(ki)
j =


P

(ki)
j for i > m∗

1
m∗

[
m∗∑
i′=1

s
(ki′ )
j − λ

]
+

P
(ki)
j

s
(ki)
j

for i ≤ m∗.
(7)

where m∗ = arg maxm
1
m

(∑m
i′=1 s

(ki′ )
j − λ

)
and [·]+ denotes the positive part.

Therefore, the optimization problem in (6) is solved by a soft-thresholding operator, given in equa-
tion (7), which we shall denote as

(f (1)
j , . . . , f

(K)
j ) = Soft(∞)

λ [R(1)
j , . . . , R

(K)
j ]. (8)

While the proof of this result is lengthy, we sketch the key steps below, which are a functional ex-
tension of the subdifferential calculus approach of Fornasier and Rauhut (2008) in the linear setting.
First, we formulate an optimality condition in terms of the Gâteaux derivative as follows.

Lemma 2. The functions f
(k)
j are solutions to (6) if and only if f

(k)
j − P

(k)
j + λukvk = 0 (almost

surely), for k = 1, . . . ,K, where uk are scalars and vk are measurable functions of X
(k)
j , with

(u1, . . . , uK)T ∈ ∂∥ · ∥∞
∣∣
“

∥f
(1)
j ∥,...,∥f

(K)
j ∥

”T and vk ∈ ∂∥f (k)
j ∥, k = 1, . . . , K.

Here the former one denotes the subdifferential of the convex functional ∥ · ∥∞ evaluated at
(∥f (1)

j ∥, . . . , ∥f (K)
j ∥)T , it lies in a K-dimensional Euclidean space. And the latter denotes the sub-

differential of ∥f (k)
j ∥, which is a set of functions. Next, the following proposition from Rockafellar

and Wets (1998) is used to characterize the subdifferential of sup-norms.

Lemma 3. The subdifferential of ∥ · ∥∞ on RK is

∂∥ · ∥∞
∣∣
x

=
{

B1(1) if x = 0
conv{sign(xk)ek : |xk| = ∥x∥∞} otherwise.

where B1(1) denotes the ℓ1 ball of radius one, conv(A) denotes the convex hull of set A, and ek is
the k-th canonical unit vector in RK .

Using Lemma 2 and Lemma 3, the proof of Theorem 1 proceeds by considering three cases for the
sup-norm subdifferential evaluated at (∥f (1)

j ∥, . . . , ∥f (K)
j ∥)T : (1) ∥f (k)

j ∥ = 0 for k = 1, . . . ,K; (2)

there exists a unique k, such that ∥f (k)
j ∥ = maxk′=1,...,K ∥f (k′)

j ∥ ̸= 0; (3) there exists at least two

k ̸= k′, such that ∥f (k)
j ∥ = ∥f (k′)

j ∥ = maxm=1,...,K ∥f (m)
j ∥ ̸= 0. The derivations for cases (1) and

(2) are relatively straightforward, but for case (3) we prove the following.

Lemma 4. The sup-norm is attained precisely at m > 1 entries if only if m is the largest number
such that s

(km)
j ≥ 1

m−1

(∑m−1
i′=1 s

(ki′ )
j − λ

)
.

The proof of Theorem 1 then follows from the above lemmas and some calculus. Based on this
result, the data version of the soft-thresholding operator is obtained by replacing the conditional
expectation P

(k)
j = E(R(k)

j |X(k)
j ) by S(k)

j R
(k)
j , where S(k)

j is a nonparametric smoother for

variable X
(k)
j , e.g., a local linear or spline smoother; see Figure 1. The resulting simultaneous

sparse backfitting algorithm for multi-task and multi-response sparse additive models (MT-SpAM
and MR-SpAM) is shown in Figure 2. The algorithm for the multi-response case (MR-SpAM) has
S(1)

j = . . . = S(K)
j since there is only a common design matrix.
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SOFT-THRESHOLDING OPERATOR SOFT
(∞)
λ [R(1)

j , . . . , R
(K)
j ;S(1)

j , . . . ,S(K)
j ]: DATA VERSION

Input: Smoothing matrices S(k)
j , residuals R

(k)
j for k = 1, . . . , K, regularization parameter λ.

(1) Estimate P
(k)
j = E

h

R
(k)
j |X

(k)
j

i

by smoothing: bP
(k)
j = S(k)

j R
(k)
j ;

(2) Estimate norm: bs
(k)
j = ∥ bPj∥n and order the indices according to bs

(k1)
j ≥ bs

(k2)
j ≥ . . . ≥ bs

(kK)
j ;

(3) Find m∗ = arg maxm
1
m

“

Pm
i′=1 s

(ki′ )
j − λ

”

and calculate

bf
(ki)
j =

8

>

>

<

>

>

:

bP
(ki)
j for i > m∗

1

m∗

"

m∗
X

i′=1

bs
(ki′ )
j − λ

#

+

bP
(ki)
j

bs
(ki)
j

for i ≤ m∗;

(4) Center bf
(k)
j ← bf

(k)
j −mean( bf

(k)
j ) for k = 1, . . . , K.

Output: Functions bf
(k)
j for k = 1, . . . , K.

Figure 1: Data version of the soft-thresholding operator.

MULTI-TASK AND MULTI-RESPONSE SPAM

Input: Data (x
(k)
i , y

(k)
i ), i = 1, . . . , n, k = 1, . . . , K and regularization parameter λ.

Initialize: Set bf
(k)
j = 0 and compute smoothers S(k)

j for j = 1, . . . , p and k = 1, . . . , K;
Iterate until convergence:

For each j = 1, . . . , p:

(1) Compute residuals: R
(k)
j = y(k) −

P

k′ ̸=j
bf
(k)

k′ for k = 1, . . . , K;

(2) Threshold: bf
(1)
j , . . . , bf

(K)
j ← Soft(∞)

λ [R
(1)
j , . . . , R

(K)
j ;S(1)

j , . . . ,S(K)
j ].

Output: Functions bf (k) for k = 1, . . . , K.

Figure 2: The simultaneous sparse backfitting algorithm for MT-SpAM or MR-SpAM. For the multi-
response case, the same smoothing matrices are used for each k.

3.1 Penalized Local Scoring Algorithm for SMALR

We now derive a penalized local scoring algorithm for sparse multi-category additive logistic re-
gression (SMALR), which can be viewed as a variant of Newton’s method in function space. At
each iteration, a quadratic approximation to the loss is used as a surrogate functional with the regu-
larization term added to induce joint functional sparsity. However, a technical difficulty is that the
approximate quadratic problem in each iteration is weighted by a non-diagonal matrix in function
space, thus a trivial extension of the algorithm in (Ravikumar et al., 2007) for sparse binary non-
parametric logistic regression does not apply. To tackle this problem, we use an auxiliary function
to lower bound the log-loss, as in (Krishnapuram et al., 2005).

The population version of the log-loss is L(f) = E[ℓf (X, Y )] with f = (f (1), . . . , f (K−1)). A
second-order Lagrange form Taylor expansion to L(f) at f̂ is then

L(f) = L(f̂) + E
[
∇L(f̂)T (f − f̂)

]
+

1
2

E
[
(f − f̂)T H(f̃)(f − f̂)

]
(9)

for some function f̃ , where the gradient is ∇L(f̂) = Y − p
bf (X) with p

bf (X) = (p
bf (Y (1) =

1 |X), . . . , p
bf (Y (K−1) = 1 |X))T , and the Hessian is H(f̃) = −diag

(
p

ef (X)
)

+ p
ef (X)p

ef (X)T .

Defining B = −(1/4)IK−1, it is straightforward to show that B ≼ H(f̃), i.e., H(f̃) − B is
positive-definite. Therefore, we have that

L(f) ≥ L(f̂) + E
[
∇L(f̂)T (f − f̂)

]
+

1
2

E
[
(f − f̂)T B(f − f̂)

]
. (10)
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SMALR: SPARSE MULTI-CATEGORY ADDITIVE LOGISTIC REGRESSION

Input: Data (xi, yi), i = 1, . . . , n and regularization parameter λ.

Initialize: bf
(k)
j = 0 and bα(k) = log

“

Pn
i=1 y

(k)
i

. “

n−
Pn

i=1

PK−1
k′=1 y

(k′)
i

””

, k = 1, . . . , K − 1

Iterate until convergence:

(1) Compute p
(k)
bf

(xi) ≡ P(Y (k) = 1 |X = xi) as in (4) for k = 1, . . . , K − 1;

(2) Calculate the transformed responses Z
(k)
i = 4

“

y
(k)
i − p

(k)
bf

(xi)
”

+bα(k)+
Pp

j=1
bf
(k)
j (xij)

for k = 1, . . . , K − 1 and i = 1, . . . , n;

(3) Call subroutines ( bf (1), . . . , bf (K−1))← MR-SpAM
“

(xi, Z
(k)
i )n

i=1,
√

2λ
”

;

(4) Adjust the intercepts: α(k) ← 1

n

n
X

i=1

Z
(k)
i ;

Output: Functions bf (k) and intercepts bα(k) for k = 1, . . . , K − 1.

Figure 3: The penalized local scoring algorithm for SMALR.

The following lemma results from straightforward calculation.

Lemma 5. The solution f that maximizes the righthand side of (10) is equivalent to the solution
that minimizes 1

2E
(
∥Z − Af∥2

n

)
where A = (−B)1/2 and Z = A−1(Y − p

bf ) + Af̂ .

Recalling that f (k) = α(k) +
∑p

j=1 f
(k)
j , equation (9) and Lemma 5 then justify the use of the

auxiliary functional

1
2

K−1∑
k=1

E
[(

Z ′(k) −
∑p

j=1 f (k)(Xj)
)2
]

+ λ′ΦK−1(f) (11)

where Z ′(k) = 4
(
Y (k) − P

bf (Y (k) = 1 |X)
)

+ α̂(k) +
∑p

j=1 f̂
(k)
j (Xj) and λ′ =

√
2λ. This is

precisely in the form of a multi-response SpAM optimization problem in equation (3). The resulting
algorithm, in the finite sample case, is shown in Figure 3.

4 Experiments

In this section, we first use simulated data to investigate the performance of the MT-SpAM simulta-
neous sparse backfitting algorithm. We then apply SMALR to a tumor classification and biomarker
identification problem. In all experiments, the data are rescaled to lie in the p-dimensional cube
[0, 1]p. We use local linear smoothing with a Gaussian kernel. To choose the regularization param-
eter λ, we simply use J-fold cross-validation or the GCV score from (Ravikumar et al., 2007) ex-
tended to the multi-task setting: GCV(λ) =

∑n
i=1

∑K
k=1 Q bf(k)(x

(k)
i , y

(k)
i ))/(n2K2−(nK)df(λ))2

where df(λ) =
∑K

k=1

∑p
j=1 ν

(k)
j I

(
∥f̂ (k)

j ∥n ̸= 0
)

, and ν
(k)
j = trace(S(k)

j ) is the effective degrees

of freedom for the univariate local linear smoother on the jth variable.

4.1 Synthetic Data

We generated n = 100 observations from a 10-dimensional three-task additive model with four
relevant variables: y

(k)
i =

∑4
j=1 f

(k)
j (x(k)

ij ) + ϵ
(k)
i , k = 1, 2, 3, where ϵ

(k)
i ∼ N (0, 1); the com-

ponent functions f
(k)
j are plotted in Figure 4. The 10-dimensional covariates are generated as

X
(k)
j = (W (k)

j + tU (k))/(1 + t), j = 1, . . . , 10 where W
(k)
1 , . . . , W

(k)
10 and U (k) are i.i.d. sampled

from Uniform(−2.5, 2.5). Thus, the correlation between Xj and Xj′ is t2/(1 + t2) for j ̸= j′.

The results of applying MT-SpAM with the bandwidths h = (0.08, . . . , 0.08) and regularization
parameter λ = 0.25 are summarized in Figure 4. The upper 12 figures show the 12 relevant com-
ponent functions for the three tasks; the estimated function components are plotted as solid black
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Figure 4: (Top) Estimated vs. true functions from MT-SpAM; (Middle) Regularization paths using MT-SpAM.
(Bottom) Quantitative comparison between MR-SpAM and MARS

lines and the true function components are plotted using dashed red lines. For all the other variables
(from dimension 5 to dimension 10), both the true and estimated components are zero. The middle
three figures show regularization paths as the parameter λ varies; each curve is a plot of the max-
imum empirical L1 norm of the component functions for each variable, with the red vertical line
representing the selected model using the GCV score. As the correlation increases (t increases), the
separation between the relevant dimensions and the irrelevant dimensions becomes smaller. Using
the same setup but with one common design matrix, we also compare the quantitative performance
of MR-SpAM with MARS (Friedman, 1991), which is a popular method for multi-response additive
regression. Using 100 simulations, the table illustrates the number of times the models are correctly
identified and the mean squared error with the standard deviation in the parentheses. (The MARS
simulations are carried out in R, using the default options of the mars function in the mda library.)

4.2 Gene Microarray Data

Here we apply the sparse multi-category additive logistic regression model to a microarray dataset
for small round blue cell tumors (SRBCT) (Khan et al., 2001). The data consist of expression
profiles of 2,308 genes (Khan et al., 2001) with tumors classified into 4 categories: neuroblastoma
(NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL), and the Ewing family of tumors
(EWS). The dataset includes a training set of size 63 and a test set of size 20. These data have
been analyzed by different groups. The main purpose is to identify important biomarkers, which
are a small set of genes that can accurately predict the type of tumor of a patient. To achieve 100%
accuracy on the test data, Khan et al. (2001) use an artificial neural network approach to identify 96
genes. Tibshirani et al. (2002) identify a set of only 43 genes, using a method called nearest shrunken
centroids. Zhang et al. (2008) identify 53 genes using the sup-norm support vector machine.

In our experiment, SMALR achieves 100% prediction accuracy on the test data with only 20 genes,
which is a much smaller set of predictors than identified in the previous approaches. We follow
the same procedure as in (Zhang et al., 2008), and use a very simple screening step based on the
marginal correlation to first reduce the number of genes to 500. The SMALR model is then trained
using a plugin bandwidth h0 = 0.08, and the regularization parameter λ is tuned using 4-fold cross
validation. The results are tabulated in Figure 5. In the left figure, we show a “heat map” of the
selected variables on the training set. The rows represent the selected genes, with their cDNA chip
image id. The patients are grouped into four categories according to the corresponding tumors,
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Figure 5: SMALR results on gene data: heat map (left), marginal fits (center), and CV score (right).

as illustrated in the vertical groupings. The genes are ordered by hierarchical clustering of their
expression profiles. The heatmap clearly shows four block structures for the four tumor categories.
This suggests visually that the 20 genes selected are highly informative of the tumor type. In the
middle of Figure 5, we plot the fitted discriminant functions of different genes, with their image ids
listed on the plot. The values k = 1, 2, 3 under each subfigure indicate the discriminant function
the plot represents. We see that the fitted functions are nonlinear. The right subfigure illustrates the
total number of misclassified samples using 4-fold cross validation, the λ values 0.3, 0.4 are both
zero, for the purpose of a sparser biomarker set, we choose λ = 0.4. Interestingly, only 10 of the
20 identified genes from our method are among the 43 genes selected using the shrunken centroids
approach of Tibshirani et al. (2002). 16 of them are are among the 96 genes selected by neural
network approach of Khan et al. (2001). This non-overlap may suggest some further investigation.

5 Discussion and Acknowledgements

We have presented new approaches to fitting sparse nonparametric multi-task regression models and
sparse multi-category classification models. Due to space constraints, we have not discussed results
on the statistical properties of these methods, such as oracle inequalities and risk consistency; these
theoretical results will be reported elsewhere. This research was supported in part by NSF grant
CCF-0625879.
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