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Abstract

By attempting to simultaneously partition both the rows (examples) and columns
(features) of a data matrix, Co-clustering algorithms often demonstrate surpris-
ingly impressive performance improvements over traditional one-sided row clus-
tering techniques. A good clustering of features may be seen as a combinatorial
transformation of the data matrix, effectively enforcing a form of regularization
that may lead to a better clustering of examples (and vice-versa). In many appli-
cations, partial supervision in the form of a few row labels as well as column labels
may be available to potentially assist co-clustering. In this paper, we develop two
novel semi-supervised multi-class classification algorithms motivated respectively
by spectral bipartite graph partitioning and matrix approximation formulations for
co-clustering. These algorithms (i) support dual supervision in the form of labels
for both examples and/or features, (ii) provide principled predictive capability on
out-of-sample test data, and (iii) arise naturally from the classical Representer
theorem applied to regularization problems posed on a collection of Reproducing
Kernel Hilbert Spaces. Empirical results demonstrate the effectiveness and utility
of our algorithms.

1 Introduction

Consider the setting where we are given large amounts of unlabeled data together with dual su-
pervision in the form of a few labeled examples as well as a few labeled features, and the goal
is to estimate an unknown classification function. This setting arises naturally in numerous appli-
cations. Imagine, for example, the problem of inferring sentiment (“positive” versus “negative”)
associated with presidential candidates from online political blog posts represented as word vectors,
given the following: (a) a vast collection of blog posts easily downloadable from the web (unlabeled
examples), (b) a few blog posts whose sentiment for a candidate is manually identified (labeled ex-
amples), and (c) prior knowledge of words that reflect positive (e.g., ’superb’) and negative (e.g,
’awful’) sentiment (labeled features). Most existing semi-supervised algorithms do not explicitly
incorporate feature supervision. They typically implement the cluster assumption [3] by learning
decision boundaries such that unlabeled points belonging to the same cluster are given the same
label, and empirical loss over labeled examples is concurrently minimized. In situations where the
classes are predominantly supported on unknown subsets of similar features, it is clear that feature
supervision can potentially illuminate the true cluster structure inherent in the unlabeled examples
over which the cluster assumption ought to be enforced.

Even when feature supervision is not available, there is ample empirical evidence in numerous recent
papers in the co-clustering literature (see e.g., [5, 1] and references therein), suggesting that the
clustering of columns (features) of a data matrix can lead to massive improvements in the quality
of row (examples) clustering. An intuitive explanation is that column clustering enforces a form of
dimensional reduction or implicit regularization that is responsible for performance enhancements
observed in many applications such as text clustering, microarray data analysis and video content
mining [1]. In this paper, we utilize data-dependent co-clustering regularizers for semi-supervised
learning in the presence of partial dual supervision.
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Our starting point is the spectral bipartite graph partitioning approach of [5] which we briefly review
in Section 2.1. This approach effectively applies spectral clustering on a graph representation of
the data matrix and is also intimately related to Singular Value Decomposition. In Section 2.2 we
review an equivalence between this approach and a matrix approximation objective function that
is minimized under orthogonality constraints [6]. By dropping the orthogonality constraints but
imposing non-negativity constraints, one is led to a large family of co-clustering algorithms that
arise from the non-negative matrix factorization literature.

Based on the algorithmic intuitions embodied in the algorithms above, we develop two semi-
supervised classification algorithms that extend the spectral bipartite graph partitioning approach
and the matrix approximation approach respectively. We start with Reproducing Kernel Hilbert
Spaces (RKHSs) defined over both row and column spaces. These RKHSs are then coupled through
co-clustering regularizers. In the first algorithm, we directly adopt graph Laplacian regularizers
constructed from the bipartite graph of [5] and include it as a row and column smoothing term in
the standard regularization objective function. The solution is obtained by solving a convex opti-
mization problem. This approach may be viewed as a modification of the Manifold Regularization
framework [2] where we now jointly learn row and column classification functions. In the second
algorithm proposed in this paper, we instead add a (non-convex) matrix approximation term to the
objective function, which is then minimized using a block-coordinate descent procedure.

Unlike, their unsupervised counterparts, our methods support dual supervison and naturally possess
out-of-sample extension. In Section 4, we provide experimental results where we compare against
various baseline approaches, and highlight the performance benefits of feature supervision.

2 Co-Clustering Algorithms

Let X denote the data matrix with n data points and d features. The methods that we discuss in
this section output a row partition function πr : {i}n

i=1 7→ {j}mr

j=1 and a column partition function

πc : {i}d
i=1 7→ {j}mc

j=1 that give cluster assignments to row and column indices respectively. Here,
mr is the desired number of row clusters and mc is the desired number of column clusters. Below,
by xi we mean the ith example (row) and by fj we mean the jth column (feature) in the data matrix.

2.1 Bipartite Graph Partitioning

In the co-clustering technique introduced by [5], the data matrix is modeled as a bipartite graph
with examples (rows) as one set of nodes and features (columns) as another. An edge (i, j) exists
if feature fj assumes a non-zero value in example xi, in which case the edge is given a weight of
Xij . This bi-partite graph is undirected and there are no inter-example or inter-feature edges. The
adjacency matrix, W, and the normalized Laplacian [4], M, of this graph are given by,

W =

[

0 X

XT 0

]

, M = I−D− 1
2 WD− 1

2 (1)

where D is the diagonal degree matrix defined by Dii =
∑

i Wij and I is the (n + d) × (n + d)
identity matrix. Guided by the premise that column clustering induces row clustering while row
clustering induces column clustering, [5] propose to find an optimal partitioning of the nodes of the
bipartite graph. This method is retricted to obtaining co-clusterings where mr = mc = m. The m-
partitioning is obtained by minimizing the relaxation of the normalized cut objective function using
standard spectral clustering techniques. This reduces to first constructing a spectral representation of
rows and columns given by the smallest eigenvectors of M, and then performing standard k-means
clustering on this representation, to finally obtain the partition functions πr, πc. Due to the special
structure of Eqn. 1, it can be shown that the spectral representation used in this algorithm is related
to the singular vectors of a normalized version of X.

2.2 Matrix Approximation Formulation

In [6] it is shown that the bipartite spectral graph partitioning is closely related to solving the fol-

lowing matrix approximation problem, (Fr
⋆,Fc

⋆) = argminFr
T Fr=I,Fc

T Fc=I ‖X − FrFc
T ‖fro

where Fr is an n × m matrix and Fc is a d × m matrix. Once the minimization is performed,
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πr(i) = argmaxj Fr
⋆
ij and πc(i) = argmaxj Fc

⋆
ij . In a non-negative matrix factorization approach,

the orthogonality constraints are dropped to make the optimization easier while non-negativity con-
straints Fr,Fc ≥ 0 are introduced with the goal of lending better interpretability to the solutions.
There are numerous multiplicative update algorithms for NMF which essentially have the flavor of
alternating non-convex optimization. In our empirical comparisons in Section 4, we use the Alter-
nating Constrained Least Squares (ACLS) approach of [12]. In Section 3.2 we consider a 3-factor
non-negative matrix approximation to incorporate unequal values of mr and mc, and to improve the
quality of the approximation. See [7, 13] for more details on matrix tri-factorization based formula-
tions for co-clustering.

3 Objective Functions for Regularized Co-clustering with Dual Supervision

Let us consider examples x to be elements of R ⊂ ℜd. We consider column values f for each
feature to be a data point in C ⊂ ℜn. Our goal is to learn partition functions defined over the entire
row and column spaces (as opposed to matrix indices), i.e., πr : R 7→ {i}mr

i=1 and πc : C 7→ {i}mc

i=1.
For this purpose, let us introduce kr : R ×R → ℜ to be the row kernel that defines an associated
RKHS Hr. Similarly, kc : C × C → ℜ denotes the column kernel whose associated RKHS is Hc.
Below, we define πr, πc using these real valued function spaces.

Consider a simultaneous assignment of rows into mr classes and columns into mc classes. For any
data point x, denote Fr(x) = [f1

r (x) · · · fmr
r (x)]T ∈ ℜmr to be a vector whose elements are soft

class assignments where f j
r ∈ Hr for all j. For the given n data points, denote Fr to be the n×mr

class assignment matrix. Correspondingly, Fc(f) is defined for any feature f ∈ C, and Fc denotes
the associated column class assignment matrix. Additionally, we are given dual supervision in the
form of label matrices Yr ∈ ℜ

n×mr and Yc ∈ ℜ
m×mc where Yrij

= 1 specifies that the ith

example is labeled with class j (simlarly for the feature labels matrix Yc). The associated row sum
for a labeled point is 1. Unlabeled points have all-zero rows, and the row sums are therefore 0. Let
Jr (Jc) denote a diagonal matrix of size n×n (d×d) whose diagonal entry is 1 for labeled examples
(features) and 0 otherwise. By Is we will denote an identity matrix of size s×s. We use the notation
tr(A) to mean the trace of the matrix A.

3.1 Manifold Regularization with Bipartite Graph Laplacian (MR)

In this approach, we setup the following optimization problem,

argmin
Fr∈H

mr
r ,Fc∈H

mc
c

γr

2

mr
∑

i=1

‖f i
r‖

2
Hr

+
γc

2

mc
∑

i=1

‖f i
c‖

2
Hc

+
1

2
tr
[

(Fr −Yr)
T Jr(Fr −Yr)

]

+
1

2
tr
[

(Fc −Yc)
T Jc(Fc −Yc)

]

+
µ

2
tr

[

(

Fr
T Fc

T
)

M

(

Fr

Fc

)]

(2)

The first two terms impose the usual RKHS norm on the class indicator functions for rows and
columns. The middle two terms measure squared loss on labeled data. The final term measure
smoothness of the row and column indicator functions with respect to the bipartite graph introduced
in Section 2.1. This term also incorporates unlabeled examples and features. γr, γc, µ are real-valued
parameters that tradeoff various regularization terms.

Clearly, by Representer Theorem the solution is has the form,

f j
r (x) =

n
∑

i=1

αijkr(x,xi), 1 ≤ j ≤ mr, f j
c (f) =

d
∑

i=1

βijkc(f ,fi), 1 ≤ j ≤ mc (3)

Let α,β denote the corresponding optimal expansion coefficient matrices. Then, plugging in Eqn. 3
and solving the optimization problem, the solution is easily seen to be given by,

[(

γrIn 0
0 γcId

)

+ µM

(

Kr 0
0 Kc

)

+

(

JrKr 0
0 JcKc

)](

α
β

)

=

(

Yr

Yc

)

(4)
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where Kr,Kc are gram matrices over datapoints and features respectively. The partition functions
are then defined by

πr(x) = argmax
1≤j≤m

n
∑

i=1

αijkr(x,xi), πc(f) = argmax
1≤j≤m

d
∑

i=1

βijkc(f ,fi) (5)

As in Section 2.1, we assume mr = mc = m. If the linear system above is solved by explicitly
computing the matrix inverse, the computational cost is O((n + d)3 + (n + d)2m). This approach
is closely related to the Manifold Regularization framework of [2], and may be viewed as an mod-
ification of the Laplacian Regularized Least Squares (LAPRLS) algorithm, which uses a euclidean
nearest neighbor row similarity graph to capture the manifold structure in the data. Instead of using
the squared loss, one can develop variants using the SVM Hinge loss or the logistic loss function.
One can also use a large family of graph regularizers derived from the graph Laplacian [3]. In
particular, we use the iterated Laplacian of the form Mp where p is an integer.

3.2 Matrix Approximation under Dual Supervision (MA)

We now consider an alternative objective function where instead of the graph Laplacian regularizer,
we add a penalty term that measures how well the data matrix is approximated by a trifactorization

FrQFc
T ,

argmin
Fr∈H

mr
r ,Fc∈H

mc
c

Q∈ℜmr×mc

γr

2

mr
∑

i=1

‖f i
r‖

2
Hr

+
γc

2

mc
∑

i=1

‖f i
c‖

2
Hc

+
1

2
tr
[

(Fr −Yr)
T Jr(Fr −Yr)

]

+
1

2
tr
[

(Fc −Yc)
T Jc(Fc −Yc)

]

+
µ

2
‖X− FrQFc

T ‖2fro (6)

As before, the first two terms above enforce smoothness, the third and fourth terms measure squared
loss over labels and the final term enforces co-clustering. The classical Representer Theorem
(Eqn. 3) can again be applied since the above objective function only depends on point evalua-
tions and RKHS norms of functions in Hr,Hc. The optimal expansion coefficient matrices, α,β,
in this case are obtained by solving,

argmin
α,β,Q

J (α,β,Q) =
γr

2
tr
[

αT Krα
]

+
γc

2
tr
[

βT Kcβ
]

+
1

2
tr
[

(Krα−Yr)
T Jr(Krα−Yr)

]

+
1

2
tr
[

(Kcβ −Yc)
T Jc(Kcβ −Yc)

]

+
µ

2
‖X−KrαQβT Kc‖

2
fro (7)

This problem is not convex in α,β,Q. We propose a block coordinate descent algorithm for the
problem above. Keeping two variables fixed, the optimization over the other is a convex problem
with a unique solution. This guarantees monotonic decrease of the objective function and conver-
gence to a stationary point. We get the simple update equations given below,

∂J

∂Q
= 0 =⇒ Q = (αT K2

rα)−1(αT KrXKcβ)(βT K2
cβ)−1 (8)

∂J

∂α
= 0 =⇒ [γrIn + JrKr]α + µKrαZc =

(

JrYr + µXKcβQT
)

(9)

∂J

∂β
= 0 =⇒ [γcId + JcKc]β + µKcβZr =

(

JcYc + µXT KrαQ
)

(10)

where Zc = QβT K2
cβQT , Zr = QT αT K2

rαQ (11)

In Eqn 8, we assume that the appropriate matrix inverses exist. Eqns 9 and 10 are generalized
Sylvester matrix equations of the form AXB⊤ + CXD⊤ = E whose unique solution X under
certain regularity conditions can be exactly obtained by an extended version of the classical Bartels-
Stewart method [9] whose complexity is O((p+q)3) for p×q-sized matrix variableX . Alternatively,

one can solve the linear system [10]:
(

B⊤ ⊗A + D⊤ ⊗ C
)

vec(X) = vec(E) where ⊗ denotes
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Kronecker product and vec(X) vectorizes X in a column oriented way (it behaves as the matlab
operator X(:)). Thus, the solution to Eqns (9,10) are as follows,

[Imr
⊗ (γrIn + JrKr) + µZc ⊗Kr] vec(α) = vec(JrYr + µXKcβQT ) (12)

[Imc
⊗ (γrId + JcKc) + µZr ⊗Kc] vec(β) = vec(JcYc + µXT KrαQ) (13)

These linear systems are of size nmr × nmr and dmc × dmc respectively. It is computationally
prohibitive to solve these systems by direct matrix inversion. We use an iterative conjugate gradients
(CG) technique instead, which can exploit hot-starts from the previous solution, and the fact that the
matrix vector products can be computed relatively efficiently as follows,

[Imr
⊗ (γrIn + JrKr) + µZc ⊗Kr] vec(α) = vec(µKrαZ⊤c ) + γrvec(α) + vec(JrKrα)

To optimize α (β) given fixed Q and β (α), we run CG with a stringent tolerance of 10−10 and
maximum of 200 iterations starting from the α(β) from the previous iteration. In an outer loop, we
monitor the relative decrease in the objective function and terminate when the relative improvement
falls below 0.0001. We use a maximum of 40 outer iterations where each iteration performs one
round of α,β,Q optimization. Empirically, we find that the block coordinate descent approach
often converges surprisingly quickly (see Section 4.2). The final classification is given by Eqn. 5.

4 Empirical Study

In this section, we present an empirical study aimed at comparing the proposed algorithms with sev-
eral baselines: (i) Unsupervised co-clustering with spectral bipartite graph partitioning (BIPARTITE)
and non-negative matrix factorization (NMF), (ii) supervised performance of standard regularized
least squares classification (RLS) that ignores unlabeled data, and (iii) one-sided semi-supervised
performance obtained with Laplacian RLS (LAPRLS) which uses a euclidean nearest-neighbor row
similarity graph. The goal is to observe whether dual supervision particularly along features can help
improve classification performance, and whether joint RKHS regularization as formulated in our al-
gorithms (abbreviated MR for the manifold regularization based method of Section 3.1 and MA for
the matrix approximation method of Section 3.2) along both rows and columns leads to good qual-
ity out-of-sample prediction. In the experiments below, the performance of RLS and LAPRLS is
optimized for best performance on the unlabeled set over a grid of hyperparameters. We use
Gaussian kernels with width σr for rows and σc for columns. These were set to 2kσ0r, 2

kσ0c

respectively where σ0r, σ0c are (1/m)-quantile of pairwise euclidean distances among rows and
columns respectively for an m class problem, and k is tuned over {−2,−1, 0, 1, 2} to optimize 3-
fold cross-validation performance of fully supervised RLS. The values γr, γc, µ are loosely tuned
for MA,MR with respect to a single random split of the data into training and validation set; more
careful hyperparameter tuning may further improve the results presented below.

We focus on performance in predicting row labels. To enable comparison with the unsupervised co-
clustering methods, we use the popularly used F-measure defined on pairs of examples as follows:

Precision =
Number of Pairs Correctly Predicted

Number of Pairs Predicted to be In Same Cluster or Class

Recall =
Number of Pairs Correctly Predicted

Number of Pairs in the Same Cluster or Class

F-measure = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (14)

4.1 A Toy Dataset

We generated a toy 2-class dataset with 200 examples per class and 100 features to demonstrate the
main observations. The feature vector for a positive example is of the form [2u−0.1 2u+0.1], and
for a negative example is of the form [2u+0.1 2u−0.1], where u is a 50-dimensional random vector
whose entries are uniformly distributed over the unit interval. It is clear that there is substantial over-
lap between the two classes. Given a column partitioning πc, consider the following transformation:

T (x) =
(

∑

i:πc(i)=1 xi

|i:πc(i)=1| ,
∑

i:πc(i)=−1 xi

|i:πc(i)=−1|

)

that maps examples in ℜ100 to the plane ℜ2 by composing

a single feature whose value equals the mean of all features in the same partition. For the correct
column partitioning, πc(i) = 1, 1 ≤ i ≤ 50, πc(i) = −1, 50 < i ≤ 100, the examples under the

5



action of T are shown in Figure 1 (left). It is clear that T renders the data to be almost separable. It is
therefore natural to attempt to (effectively) learn T in a semi-supervised manner. In Figure 1 (right),
we plot the learning curves of various algorithms with respect to increasing number of row and col-
umn labels. On this dataset, co-clustering techniques (BIPARTITE, NMF) perform fairly well, and
even significantly better than RLS, which has an optimized F-measure of 67% with 25 row labels.
With increasing amounts of column labels, the learning curves of MR and MA steadily lift eventu-
ally outperforming the unsupervised techniques. The hyperparameters used in this experiment are:
σr = 2.1, σc = 4.1, γr = γc = 0.001, µ = 10 for MR and 0.001 for MA.

Figure 1: left: Examples in the toy dataset under the transformation defined by the correct column
partitioning. right: Performance comparison – the number of column labels used are marked.
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4.2 Text Categorization

We performed experiments on document-word matrices drawn from the 20-newgroups dataset pre-
processed as in [15]. The preprocessed data has been made publicly available by the authors of [15]1.
For each word w and class c, we computed a score as follows:
score(w, c) = −P (Y = c) log P (Y = c)− P (W = w)P (Y = c|W = w) log P (Y = c|W = w)
− P (W 6= w)P (Y = c|W 6= w) log P (Y = c|W 6= w), where P (Y = c) is the fraction of
documents whose category is c, P (W = w) is the fraction of times word w is encountered, and
P (Y = c|W = w) (P (Y = c|W 6= w)) is the fraction of documents with class c when w is
present (absent). It is easy to see that the mutual information between the indicator random vari-
able for w and the class variable is

∑

c score(w, c). We simulated manual labeling of words by
associating w with the class argmaxc score(w, c). Finally, we restricted attention to 631 words
with highest overall mutual information and 2000 documents that belong to the following 5 classes:
comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space, talk.politics.mideast. Since words of
talk.politics.mideast accounted for more than half the vocabulary, we used the class normalization
prescribed in [11] to handle the imbalance in the labeled data.

Results presented in Table 1 are averaged over 10 runs. In each run, we randomly split the documents
into training and test sets, in the ratio 1 : 3. The training set is then further split into labeled
and unlabeled sets by randomly selecting 75 labeled documents. We experimented with increasing
number of randomly chosen word labels. The hyperparameters are as follows: σr = 0.43, σc =
0.69, γr = γc = µ = 1 for MR and γr = γc = 0.0001, µ = 0.01 for MA.

We observe that even without any word supervision MR outperforms all the baseline approaches:
unsupervised co-clustering with BIPARTITE and NMF, standard RLS that only uses labeled doc-
uments, and also LAPRLS which uses a graph Laplacian based on document similarity for semi-
supervised learning. This validates the effectiveness of the bipartite document and word graph
regularizer. As the amount of word supervision increases, the performance of both MR and MA im-
proves gracefully. The out-of-sample extension to test data is of good quality, considering that
our test sets are much larger than our training sets. We also observed that the mean number of
(outer) iterations required for convergence of MA decreases as labels are increased from 0 to 500:
28.7(0), 12.2(100), 12.7(200), 9.3(350), 7.8(500). In, Figure 2 we show the top unlabeled words

1At http://www.princeton.edu/∼nslonim/data/20NG data 74000.mat.gz
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Table 1: Performance on 5-Newsgroups Dataset with 75 row labels

(a) F-measure on Unlabeled Set

BIPARTITE NMF RLS LAPRLS

54.8 (7.8) 54.4 (6.2) 62.2 (3.1) 62.5 (3.0)

(b) F-measure on Test Set

RLS LAPRLS

61.2 (1.7) 61.9 (1.4)

(c) F-measure on Unlabeled Set

# col labs MR MA

0 64.7 (1.3) 60.4 (5.6)
100 72.3 (2.2) 59.6 (5.7)
200 77.0 (2.5) 69.2 (7.1)
350 78.6 (2.1) 75.1 (4.1)
500 79.3 (1.6) 77.1 (5.8)

(d) F-measure on Test Set

# col labs MR MA

0 57.1 (2.1) 60.3 (7.0)
100 60.9 (2.4) 60.9 (5.0)
200 66.2 (2.8) 66.2 (6.2)
350 68.1 (1.9) 70.3 (4.4)
500 69.1 (2.4) 71.0 (6.0)

for each class sorted by the real-valued prediction score assigned by MR (in one run trained with
100 labeled words). Intuitvely, the main words associated with the class are retrieved.

Figure 2: Top unlabeled words categorized by MR
COMP.GRAPHICS: polygon, gifs, conversion, shareware, graphics, rgb, vesa, viewers, gif, format, viewer, amiga, raster, ftp, jpeg, manipulation

REC.MOTORCYCLES: biker, archive, dogs, yamaha, plo, wheel, riders, motorcycle, probes, ama, rockies, neighbors, saudi, kilometers

REC.SPORT.BASEBALL: clemens, morris, pitched, hr, batters, dodgers, offense, reds, rbi, wins, mets, innings, ted, defensive, sox, inning

SCI.SPACE: oo, servicing, solar, scispace, scheduled, atmosphere, missions, telescope, bursts, orbiting, energy, observatory, island, hst, dark

TALK.POLITICS.MIDEAST:turkish, greek, turkey, hezbollah, armenia, territory, ohanus, appressian, sahak, melkonian, civilians, greeks

4.3 Project Categorization

We also considered a problem that arises in a real business-intelligence setting. The dataset is
composed of 1169 projects tracked by the Integrated Technology Services division of IBM. These
projects need to be categorized into 8 predefined product categories within IBM’s Server Services
product line, with the eventual goal of performing various follow-up business analyses at the gran-
ularity of categories. Each project is represented as a 112-dimensional vector specifying the dis-
tribution of skills required for its delivery. Therefore, each feature is associated with a particular
job role/skill set (JR/SS) combination, e.g., “data-specialist (oracle database)”. Domain experts val-
idated project (row) labels and additionally provided category labels for 25 features deemed to be
important skills for delivering projects in the corresponding category. By demonstrating our algo-
rithms on this dataset, we are able to validate a general methodology with which to approach project
categorization across all service product lines (SPLs) on a regular basis. The amount of dual su-
pervision available in other SPLs is indeed severely limited as both the project categories and skill
definitions are constantly evolving due to the highly dynamic business environment.

Results presented in Table 2 are averaged over 10 runs. In each run, we randomly split the projects
into training and test sets, in the ratio 3 : 1. The training set is then further split into labeled and
unlabeled sets by randomly selecting 30 labeled projects. We experimented with increasing number
of randomly chosen column labels, from none to all 25 available labels. The hyperparameters are
as follows: γr = γc = 0.0001, σr = 0.69, σc = 0.27 chosen as described earlier. Results in
Tables 2(c),2(d) are obtained with µ = 10 for MR, µ = 0.001 for MA.

We observe that BIPARTITE performs significantly better than NMF on this dataset, and is competitve
with supervised RLS performance that relies only on labeled data. By using LAPRLS , performance
can be slightly boosted. We find that MR outperforms all approaches significantly even with very
few column labels. We conjecture that the comparatively lower mean and high variance in the per-
formance of MA on this dataset is due to suboptimal local minima issues, which may be alleviated
using annealing techniques or multiple random starts, commonly used for Transductive SVMs [3].
From Tables 2(c),2(d) we also observe that both methods give high quality out-of-sample extension
on this problem.
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Table 2: Performance on IBM Project Categorization Dataset with 30 row labels

(a) F-measure on Unlabeled Set

BIPARTITE NMF RLS LAPRLS

89.1 (2.7) 56.5 (1.1) 88.1 (7.3) 90.20 (5.8)

(b) F-measure on Test Set

RLS LAPRLS

87.8 (8.4) 90.2 (6.0)

(c) F-measure on Unlabeled Set

# col labs MR MA

0 92.7 (4.6) 90.7 (4.8)
5 94.9 (1.8) 87.8 (6.4)
10 93.0 (4.2) 89.0 (8.0)
15 92.3 (7.0) 89.1 (7.4)
25 98.0 (0.5) 92.2 (6.0)

(d) F-measure on Test Set

# col labs MR MA

0 89.2 (5.5) 90.0 (5.5)
5 93.3 (1.7) 87.4 (6.6)
10 91.9 (4.2) 89.1 (8.3)
15 92.2 (5.2) 89.2 (8.8)
25 96.4 (1.6) 92.1 (6.8)

5 Conclusion

We have developed semi-supervised kernel methods that support partial supervision along both di-
mensions of the data. Empirical studies show promising results and highlight the previously un-
tapped benefits of feature supervision in semi-supervised settings. For an application of closely
related algorithms to blog sentiment classification, we point the reader to [14]. For recent work on
text categorization with labeled features instead of labeled examples, see [8].
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