
Appendix: Proofs

Theorem 2

The proof proceeds by induction. The initial parameters µ1 = 0 and Σ1 = aI can be trivially written in the
desired form. For the induction step we first substitute (16) in (8) and get,

µi+1 = µi + αiyiΣixi =
i−1X

p=1

 
ν(i)

p + αiyi

i−1X

q=1

π(i)
p,qx

"
q xi

!
xp + axi ,

which is of the desired form with

ν(i+1)
i = a and ν(i+1)

p = ν(i)
p + αiyi

i−1X

q

π(i)
p,qx

"
q xi for p < i . (20)

A similar elementary calculation can be done for the covariance to obtain

π(i+1)
p,q =−βi

X

r,s

π(i)
p,rπ

(i)
s,qx

"
r xs + π(i)

p,q , π(i+1)
p,i =π(i+1)

i,p =−βia
i−1X

p,r=1

π(i)
p,r

“
x"r xi

”
, π(i+1)

i,i =−βia
2 ,

(21)
for p = 1 . . . i− 1, where

βi = (αiφ) /

„q
x"i Σi+1xi + (x"i Σixi)αiφ

«
= (αiφ) / (

√
ui + viαiφ) . (22)

Finally, we show that the coefficients {ν(i)
p } and {π(i)

p,q} depend on the data only through inner products. From
(11) we have that both mi and vi can be written only using inner products. From (14), αi can also be written as
a function of inner products, which in turn, together with (12) implies that ui can be written that way. Therefore,
βi can also be written as a function of inner products. Finally, using (20) and (21) we conclude that {ν(i)

p } and
{π(i)

p,q} depend on the data only through inner products.

Theorem 4

We prove the theorem in four steps. First, we define a notion of confidence loss. Second, we prove an auxilary
lemma which relates the update to an update of a Euclidean projection. Third, we use the auxilary lemma to
bound the cumulative confidence loss on a run of the algorithm. Finally, we prove the theorem using this bound
and additional properties of the confidence loss.

Confidence Loss

Before analyzing the algorithm we define our confidence loss family of smooth convex loss functions. Given
an input example (x, y) and a model (µ, Σ), the confidence loss will be a function of the parameters m, v of
the induced margin Gaussian m = y (µ · x) and v = µ"Σµ. In our model, m plays a role similar to the
geometric margin in standard margin-based analyses. However, the scale of m is not fixed, as it depends on the
variance v: the magnitude of margin random variable M is large if the variance is large. We thus define our
loss function to be a function of the margin m normalized by the standard deviation:

m̄ =
m√
v

.

By analogy with hinge-loss-based losses, the confidence loss is given by a family of functions fφ parameterized
by φ ≥ 0 that bound the 0-1 loss as follows:

&φ (m̄) =


0 m̄ ≥ φ
fφ(m̄) m̄ < φ , (23)

where fφ(x) is a monotonically decreasing function that satisfies fφ(φ) = 0. For reasons that will become
clear in what follows, we use the following fφ in our analysis:

fφ(m̄) =

„
−m̄ψ +

q
m̄2 φ4

4 + φ2ξ

«2

φ2ξ
, (24)

where ψ and ξ are defined above (13). The following lemma summarizes its main properties:
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Lemma 5 The function fφ defined in (24) satisfies the following:

1. fφ(φ) = 0 and fφ(0) = 1.

2. fφ(x) is convex and decreasing for x ≤ φ.

3. If x ≤ 0 then fφ(x) ≥ 1.

4. fφ(x) ≈ x2 1+φ2

φ2 for x& −2
q

1+φ2

φ2 .

5. fφ(x) ≈ Aφ2 for x ! φ for some A > 0.

6. &φ

“
mi√

vi

”
= 1+φ2

φ2 α2
i vi (Eqns. (14,11)).

Proof: The first property can easily be verified via substitution. For the second property, we note that fφ(x) is
proportional to g2

φ(x) for,

gφ(x) = −xψ +

r
x2

φ4

4
+ φ2ξ ,

and show that gφ(x) ≥ 0 for x ≤ φ. Clearly it is correct if x ≤ 0. We thus assume that 0 ≤ x ≤ φ and get

gφ(x) ≥ 0 ⇔
r

x2
φ4

4
+ φ2ξ ≥ xψ

⇔ x2 φ4

4
+ φ2ξ ≥ x2ψ2

⇔ φ2(1 + φ2) ≥ x2

 „
1 +

φ2

2

«2

− φ4

4

!

⇔ φ2(1 + φ2) ≥ x2 `1 + φ2´

⇔ φ2 ≥ x2 ,

which verifies the property of gφ(x). We now analyze g2
φ(x). Its first and second derivatives are

d(g2
φ(x))

dx
= 2gφ(x)g′φ(x)

d2(g2
φ(x))

dx
= 2

`
g′φ(x)

´2
+ 2gφ(x)g′′φ(x).

Since gφ(x) ≥ 0 then g2
φ(x) is decreasing and convex iff gφ(x) is decreasing and convex.

We thus analyze gφ(x) for x ≤ φ. Its first derivative is

g′φ(x) = −ψ +
xφ4

4q
x2 φ4

4 + φ2ξ
.

It can be easily verified that g′φ(φ) < 0. We compute its second derivative (omitting the constant of φ4/4):

g′′φ(x) =
1q

x2 φ4

4 + φ2ξ
−x

„
x2 φ4

4
+φ2ξ

«−3
2
„

x
φ4

4

«

=
x2 φ4

4 + φ2ξ − x2 φ4

4“
x2 φ4

4 + φ2ξ
” 3

2

=
φ2ξ

“
x2 φ4

4 + φ2ξ
” 3

2
≥ 0 .

We thus established that gφ(x) is strictly convex in the range, and since its first derivative is negative at x = φ,
it is also negative for x ≤ φ, which concludes the proof of property 2. Property 3 follows directly from the first
two properties.
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Figure 4: Squared hinge loss, 0 − 1 loss, and !φ(·) for various values of φ as functions of the
(normalized) margin.

For property 4, if x& −2
q

1+φ2

φ2 then
q

x2 φ4

4 + φ2ξ ≈
q

x2 φ4

4 = −xφ2

2 . In this case

fφ(x) ≈

“
−xψ − xφ2

2

”2

φ2ξ
= x2 1 + φ2

φ2
.

For property 5 we show that the first derivative of fφ(x) vanishes at x = φ, indeed,

f ′φ(φ) = 2gφ(φ)g′φ(φ) = 0 ,

since gφ(φ) = 0. Thus, the first two coefficients of the Taylor expansion of fφ(x) at x = φ vanish. The third
coefficient is non-negative due the convexity of fφ(x) at x = φ.

Finally, property 6 follows directly from the definitions of &φ(m̄), αi and v.

From the first three properties we see that the confidence loss upper-bounds the 0-1 loss. Furthermore, from
properties 4 and 5 we see that &φ(x) is quadratic both for x & 0 and for x in the region where &φ(x) is close
to zero. In this respect, &φ(x) behaves similarly to the squared hinge loss max{1 − x, 0}2. (Note that in the
analysis of the PA algorithms [4], the squared optimal value of the Lagrange multiplier α2

i is proportional to the
squared hinge loss. Interestingly, this also holds in our case for a much more complicated form for αi.) Graphs
of &φ(·) for various values of φ are given in Fig. 4, together with the squared hinge loss and the 0-1 loss. From
the figure we see a trade-off in the value of φ: larger φ yields a tighter bound on the 0-1 loss for m̄ ≤ 0, while
smaller φ yields a tighter bound for m̄ ≥ 0. This property shows up also in parameterized versions of the hinge
loss [20]. The confidence loss is carefully designed to support the analysis of the next section.

It is worth recalling here the tight connection in this work between the algebraic notion of margin and the
margin parameter φ on the one hand and the probabilistic notion of confidence and the confidence parameter
η on the other. We achieve this by linking the margin parameter and the confidence parameter through the
cumulative function of the normal distribution η = Φ(φ).

Auxilary Lemma

Lemma 6 Fix an iteration i and assume that µi,Σi and ui (defined in (11)) are constants. Then the following
two vectors are equal :

• The vector µi+1 defined in (9)

• The solution µ̃i+1 of the following projection problem:

µ̃i+1 = arg min
µ

1
2
(µ − µi)

"Σ−1
i (µ − µi)

" (25)

s.t. yi(µ · xi) ≥ φ
√

ui (26)
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Bounding the Confidence Loss

The following lemma gives an upper bound on the cumulative confidence loss on a run of the algorithm:

Lemma 7 Let (x1, y1) . . . (xn, yn) be an input sequence for the algorithm of Fig. 1, initialized with (0, I),
with xi ∈ Rd and yi ∈ {−1, +1} . Assume there exist µ∗ and Σ∗ such that for all i for which the algorithm
made an update (αi > 0),

µ∗"xiyi ≥ µ"i+1xiyi and x"i Σ∗xi ≤ x"i Σi+1xi . (27)

Let ζi = αiφ/
√

ui. Then, the following bound holds:

X

i

&φ

„
mi√
vi

«
≤ 1 + φ2

φ2

 
2DKL (N (µ∗, Σ∗) ‖N (µ1, Σ1)) + µ∗"

 
X

i

ζixix
"
i

!
µ∗
!

. (28)

Proof: From (9), we obtain
Σ−1

i+1 = Σ−1
i + ζixix

"
i . (29)

Let

∆i = 2DKL (N (µ∗, Σ∗) ‖N (µi, Σi))− 2DKL
`
N (µ∗, Σ∗) ‖N

`
µi+1, Σi+1

´´
.

We bound
P

i ∆i from above and below, starting with the upper bound. Using the fact that the sum is telescopic,
and substituting in the initial values µ1 = 0 and Σ1 = I , we obtain

X

i

∆i = 2DKL (N (µ∗, Σ∗) ‖N (µ1, Σ1))− 2DKL
`
N (µ∗, Σ∗) ‖N

`
µn+1, Σn+1

´´

≤ 2DKL (N (µ∗, Σ∗) ‖N (µ1, Σ1)) . (30)

We now give a lower bound for ∆i. Writing explicitly the definition of the Kullback-Leibler divergence we get,

∆i = log

„
detΣi

detΣ∗

«
+ Tr

`
Σ−1

i Σ∗´+ (µi − µ∗)"Σ−1
i (µi − µ∗)− d

−


log

„
detΣi+1

detΣ∗

«
+ Tr

`
Σ−1

i+1Σ
∗´+ (µi+1 − µ∗)"Σ−1

i+1(µi+1 − µ∗)− d

ff

= log

„
detΣi

detΣi+1

«
+ Tr

ˆ`
Σ−1

i − Σ−1
i+1

´
Σ∗˜

+(µi − µ∗)"Σ−1
i (µi − µ∗)(µi+1 − µ∗)"Σ−1

i+1(µi+1 − µ∗) . (31)

Substituting (29) we get,

∆i = log

„
detΣi

detΣi+1

«
+ Tr

h“
Σ−1

i − Σ−1
i − ζixix

"
i

”
Σ∗
i

+(µi − µ∗)"Σ−1
i (µi − µ∗)(µi+1 − µ∗)"

“
Σ−1

i + ζixix
"
i

”
(µi+1 − µ∗)

= log

„
detΣi

detΣi+1

«
− ζi

“
x"i Σ∗x"i

”
(32)

+(µi − µ∗)"Σ−1
i (µi − µ∗)− (µi+1 − µ∗)"Σ−1

i (µi+1 − µ∗) (33)

−ζi

`
(µi+1 − µ∗) · xi

´2
. (34)

We develop separately (32),(33),(34); starting with (32). We apply Lemma D.1 of [3], to obtain

detΣi+1

detΣi
=

detΣ−1
i

detΣ−1
i+1

= 1− ζix
"
i Σi+1xi .

Substituting in (32),

(32) = − log

„
detΣi+1

detΣi

«
− ζi

“
x"i Σ∗x"i

”
= − log

“
1− ζix

"
i Σi+1xi

”
− ζi

“
x"i Σ∗x"i

”
.

From convexity, − log(1− x) ≥ x and thus,

(32) ≥ ζi

“
x"i Σi+1xi

”
− ζi

“
x"i Σ∗x"i

”
≥ 0 , (35)
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where the last inequality follows directly from the right set of conditions in (27).

Using Theorem 2.4.1 of [1] and Lemma 6 we develop (33) and obtain the following lower bound,

(33) = (µi − µ∗)"Σ−1
i (µi − µ∗)− (µi+1 − µ∗)"Σ−1

i (µi+1 − µ∗)

≥ (µi+1 − µi)
"Σ−1

i (µi+1 − µi) .

Substituting the value of (9) we get,

(33) ≥ α2
i xiΣiΣ

−1
i Σixi = α2

i xiΣixi = α2
i vi . (36)

Finally, we further develop (34)

(34) = −ζi

“`
yi(µi+1 · xi)

´2 − 2yi(µi+1 · xi)yi(µ
∗ · xi) + (yi(µ

∗ · xi))
2
”

.

As noted above, in case of an update, the KKT conditions that the constraint (3) is equality after the update,
that is

yi(xi · µi+1) = φ
q

x"i Σi+1xi > 0 ,

and from the left set of conditions in (27) we have,

yi(µ
∗ · xi) ≥ yi(µi+1 · xi) > 0 .

Combining the above three equations we get,

(34) ≥ −ζi

“`
yi(µi+1 · xi)

´2 − 2
`
yi(µi+1 · xi)

´2
+ (yi(µ

∗ · xi))
2
”

= −ζi

“
−
`
yi(µi+1 · xi)

´2
+ (yi(µ

∗ · xi))
2
”

≥ −ζi (µ∗ · xi)
2 . (37)

Substituting (35), (36) and (37) in (32), (33) and (34) we get a lower bound,

∆i ≥ 0 + α2
i vi − ζi (µ∗ · xi)

2 = α2
i vi − µ∗"

“
ζixix

"
i

”
µ∗ . (38)

Combining (38) together with (30) and property 6 of Lemma 5 yields the desired bound.

Finishing The Proof

Given the assumptions of the theorems we have Lemma 7. By property 3 of Lemma 5, term i on the left-
hand-side of (28) upper-bounds the 0 − 1 loss of example i. We now develop the RHS of (28) by substituting
µ1 = 0,Σ1 = I ,

2DKL (N (µ∗, Σ∗) ‖N (µ1, Σ1)) + µ∗"
 
X

i

ζixix
"
i

!
µ∗

= log

„
detΣ1

detΣ∗

«
+ Tr

`
Σ−1

1 Σ∗´+ (µ1 − µ∗)"Σ−1
1 (µ1 − µ∗)− d

+µ∗"
 
X

i

ζixix
"
i

!
µ∗

= log

„
det I

detΣ∗

«
+ Tr

`
I−1Σ∗´+ (µ∗)"

 
Σ−1

1 +
X

i

ζixix
"
i

!
µ∗ − d

= − log det Σ∗ + Tr (Σ∗) + µ∗"Σ−1
n+1µ

∗ − d ,

where the last equality follows (29) .
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