
MAS: a multiplicative approximation scheme for
probabilistic inference

Ydo Wexler
Microsoft Research

Redmond, WA 98052
ydow@microsoft.com

Christopher Meek
Microsoft Research

Redmond, WA 98052
meek@microsoft.com

Abstract

We propose a multiplicative approximation scheme (MAS) for inference problems
in graphical models, which can be applied to various inference algorithms. The
method uses ε-decompositions which decompose functions used throughout the
inference procedure into functions over smaller sets of variables with a known
error ε. MAS translates these local approximations into bounds on the accuracy
of the results. We show how to optimize ε-decompositions and provide a fast
closed-form solution for an L2 approximation. Applying MAS to the Variable
Elimination inference algorithm, we introduce an algorithm we call DynaDecomp
which is extremely fast in practice and provides guaranteed error bounds on the
result. The superior accuracy and efficiency of DynaDecomp is demonstrated.

1 Introduction

Probabilistic graphical models gained popularity in the recent decades due to their intuitive rep-
resentation and because they enable the user to query about the value distribution of variables of
interest [19]. Although very appealing, these models suffer from the problem that performing infer-
ence in the model (e.g. computing marginal probabilities or its likelihood) is NP-hard [6].

As a result, a variety of approximate inference methods have been developed. Among these meth-
ods are loopy message propagation algorithms [24], variational methods [16, 12], mini buckets [10],
edge deletion [8], and a variety of Monte Carlo sampling techniques [13, 19, 21, 4, 25]. Approxima-
tion algorithms that have useful error bounds and speedup while maintaining high accuracy, include
the work of Dechter and colleagues [2, 3, 10, 17], which provide both upper and lower bounds on
probabilities, upper bounds suggested by Wainwright et.al. [23], and variational lower bounds [16].

In this paper we present an approximation scheme called the Multiplicative Approximation Scheme
(MAS), that provides error bounds for the computation of likelihood of evidence, marginal probabil-
ities, and the Maximum Probability Explanation (MPE) in discrete directed and undirected graphical
models. The approximation is based on a local operation called an ε-decomposition, that decom-
poses functions used in the inference procedure into functions over smaller subsets of variables, with
a guarantee on the error introduced. The main difference from existing approximations is the ability
to translate the error introduced in the local decompositions performed during execution of the algo-
rithm into bounds on the accuracy of the entire inference procedure. We note that this approximation
can be also applied to the more general class of multiplicative models introduced in [27].

We explore optimization of ε-decompositions and provide a fast optimal closed form solution for
the L2 norm. We also show that for the Kullback-Leiber divergence the optimization problem can
be solved using variational algorithms on local factors. MAS can be applied to various inference
algorithms. As an example we show how to apply MAS to the Variable Elimination (VE) algo-
rithm [9, 20], and present an algorithm called DynaDecomp, which dynamically decomposes func-
tions in the VE algorithm. In the results section we compare the performance of DynaDecomp with
that of Mini-buckets [10], GMF [28] and variational methods [26] for various types of models. We
find that our method achieves orders of magnitude better accuracy on all datasets.

2 Multiplicative Approximation Scheme (MAS)

We propose an approximation scheme, called the Multiplicative Approximation Scheme (MAS) for
inference problems in graphical models. The basic operations of the scheme are local approxima-
tions called ε-decompositions that decouple the dependency of variables. Every such local decom-
position has an associated error that our scheme combines into an error bound on the result.

Consider a graphical model for n variable X = {X1, . . . , Xn} that encodes a probability distribu-
tion P (X) =

∏
j ψj(dj) where Dj ⊆ X are sets determined by the model. Throughout the paper

we denote variables and sets of variables with capital letters and denote a value assigned to them
with lowercase letters. We denote the observed variables in the model by E = X \H where E = e.
To simplify the proofs we assume ψj(dj) > 1. When this is not the case, as in BNs, every function
ψj can be multiplied by a constant zj such that the assumption holds, and the result is obtained after
dividing by

∏
j zj . Thus, here we assume positivity but discuss how this can be relaxed below.

In addition to approximating functions ψ by which the original model is defined, we also may wish
to approximate other functions such as intermediate functions created in the course of an inference
algorithm. We can write the result of marginalizing out a set of hidden variables as a factor of
functions fi. The log of the probability distribution the model encodes after such marginalization
can then be written as

logP (A,E) = log
∏
i

fi(Ui) =
∑
i

φi(Ui) (1)

where A ⊆ H . When A = H we can choose sets Ui = Di and functions fi(Ui) = ψi(Di).

Definition 1 (ε-decomposition) Given a set of variables W , and a function φ(W) that assigns real
values to every instantiation W = w, a set of m functions φ̃l(Wl), l = 1 . . .m, where Wl ⊆ W is
an ε-decomposition if

⋃
lWl = W , and

1
1 + ε

≤
∑
l φ̃l(wl)
φ(w)

≤ 1 + ε (2)

for some ε ≥ 0, where wl is the projection of w on Wl.

Note that an ε-decomposition is not well defined for functions φ that equal zero or are infinite for
some instantiations. These functions can still be ε-decomposed for certain choices of subsets Wl

by defining 0
0 = 1 and ∞∞ = 1. We direct the interested reader to the paper of Geiger et.al. [12]

for a discussion on choosing such subsets. We also note that when approximating models in which
some assignments have zero probability, the theoretical error bounds can be arbitrarily bad, yet, in
practice the approximation can sometimes yield good results.

The following theorems show that using ε-decompositions the log-likelihood, logP (e), log of
marginal probabilities, the log of the Most Probable Explanation (MPE) and the log of the Max-
imum Aposteriori Probability (MAP) can all be approximated within a multiplicative factor using a
set of ε-decompositions.

Lemma 1 Let A ⊆ H , and let P (A,E) factor according to Eq. 1, then the log of the joint prob-
ability P (a, e) can be approximated within a multiplicative factor of 1 + εmax using a set of εi-
decompositions, where εmax = maxi{εi}.

Proof:

log P̃ (a, e) ≡ log
∏
i,l

eφ̃il(uil) =
∑
i,l

φ̃il(uil) ≤
∑
i

(1 + εi)φi(ui) ≤ (1 + εmax) logP (a, e)

log P̃ (a, e) ≡ log
∏
i,l

eφ̃il(uil) =
∑
i,l

φ̃il(uil) ≥
∑
i

1
1 + εi

φi(ui) ≥
1

1 + εmax
logP (a, e)

Theorem 1 For a set A′ ⊆ A the expression log
∑
a′ P (a, e) can be approximated within a multi-

plicative factor of 1 + εmax using a set of εi-decompositions.

Proof: Recall that
∑
j(cj)

r ≤
(∑

j cj

)r
for any set of numbers cj ≥ 0 and r ≥ 1. Therefore,

using Lemma 1 summing out any set of variables A′ ⊆ A does not increase the error:

log
∑
a′

P̃ (a, e) ≤ log
∑
a′

(∏
i

eφi(ui)

)1+εmax

≤ log

(∑
a′

∏
i

eφi(ui)

)1+εmax

= (1+εmax) log
∑
a′

P (a, e)

Similarly for the upper bound approximation we use the fact that
∑
j(cj)

r ≥
(∑

j cj

)r
for any set

of numbers cj ≥ 0 and 0 < r ≤ 1.

Note that whenever E = ∅, Theorem 1 claims that the log of all marginal probabilities can be
approximated within a multiplicative factor of 1 + εmax. In addition, for any E ⊆ X by setting
A′ = A the log-likelihood logP (e) can be approximated with the same factor.

A similar analysis can also be applied with minor modifications to the computation of related prob-
lems like the MPE and MAP. We adopt the simplification of the problems suggested in [10], reduc-
ing the problem of the Most Probable Explanation (MPE) to computing P (h∗, e) = maxh P (h, e)
and the problem of the Maximum Aposteriori Probability (MAP) to computing P (a∗, e) =
maxa

∑
H\A=h− P (h, e) for a set A ⊆ H .

Denote the operator ⊕ as either a sum or a max operator. Then, similar to Eq. 1, for a set H ′ ⊆ H
we can write

log⊕h′P (h, e) = log
∏
i

fi(Ui) =
∑
i

φi(Ui) (3)

Theorem 2 Given a set A ⊆ H , the log of the MAP probability log maxa
∑
H\A=h− P (h, e) can

be approximated within a multiplicative factor of 1 + εmax using a set of εi-decompositions.

Proof: The proof follows that of Theorem 1 with the addition of the fact that maxj(cj)r =
(maxjcj)

r for any set of real numbers cj ≥ 0 and r ≥ 0.

An immediate conclusion from Theorem 2 is that the MPE probability can also be approximated
with the same error bounds, by choosing A = H .

2.1 Compounded Approximation

The results on using ε-decompositions assume that we decompose functions fi as in Eqs. 1 and 3.
Here we consider decompositions of any function created during the inference procedure, and in
particular compounded decompositions of functions that were already decomposed. Suppose that a
function φ̃(W), that already incurs an error ε1 compared to a function φ(W), can be decomposed
with an error ε2. Then, according to Eq. 2, this results in a set of functions φ̂l(Wl), such that the
error of

∑
l φ̂l(Wl) is (1 + ε1) · (1 + ε2) wrt φ(W).

To understand what is the guaranteed error for an entire inference procedure consider a directed
graph where the nodes represent functions of the inference procedure, and each node v has an asso-
ciated error rv . The nodes representing the initial potential functions of the model ψi have no parents
in the model and are associated with zero error (rv = 1). Every multiplication operation is denoted
by edges directed from the nodes S, representing the multiplied functions, to a node t representing
the resulting function, the error of which is rt = maxs∈S rs. An ε-decomposition on the other hand
has a single source node s with an associated error rs, representing the decomposed function, and
several target nodes T , with an error rt = (1 + ε)rs for every t ∈ T . The guaranteed error for the
entire inference procedure is then the error associated with the sink function in the graph. In Figure 1
we illustrate such a graph for an inference procedure that starts with four functions (fa, fb, fc and
fd) and decomposes three functions, fa, fg and fj , with errors ε1, ε2 and ε3 respectively. In this
example we assume that ε1 > ε2 and that 1 + ε1 < (1 + ε2)(1 + ε3).

2.2 ε-decomposition Optimization

ε-decompositions can be utilized in inference algorithms to reduce the computational cost by par-
simoniously approximating factors that occur during the course of computation. As we discuss in

Section 3, both the selection of the form of the ε-decomposition (i.e., the sets Wi) and which factors
to approximate impact the overall accuracy and runtime of the algorithm. Here we consider the
problem of optimizing the approximating functions φ̃i given a selected factorization Wi.

Given a function f(W) = eφ(W) and the sets Wi, the goal is to optimize the functions φi(Wi) in
order to minimize the error εf introduced in the decomposition. The objective function is therefore

min
(φ̃1,...,φ̃m)

max
w∈W

{∑
i φ̃i(wi)
φ(w)

,
φ(w)∑
i φ̃i(wi)

}
(4)

This problem can be formalized as a convex problem using the following notations.

Let t = maxw∈W
{∑

i φ̃i(wi)

φ(w) , φ(w)∑
i φ̃i(wi)

}
and Sw = φ(w)∑

i φ̃i(wi)
. Now we can reformulate the

problem as
min

(φ̃1,...,φ̃m)
t s.t. ∀(W = w) Sw ≤ t and S−1

w ≤ t (5)

This type of problems can be solved with geometric programming techniques, and in particular
using interior-point methods [18]. Unfortunately, in the general case the complexity of solving this
problem requires O(m3|W |3) time, and hence can be too expensive for functions over a large do-
main. On the other hand, many times functions defined over a small domain can not be decomposed
without introducing a large error. Thus, when trying to limit the error introduced, a significant
amount of time is needed for such optimization. To reduce the computational cost of the optimiza-
tion we resort to minimizing similar measures, in the hope that they will lead to a small error εf .
Note that by deviating from Eq. 4 to choose the functions φ̃i we may increase the worst case penalty
error but not necessarily the actual error achieved by the approximation. In addition, even when
using different measures for the optimization we can still compute εf exactly.

2.2.1 Minimizing the L2 Norm

An alternative minimization measure, the L2 norm, is closely related to that in Eq. 4 and given as:

min
(φ̃1,...,φ̃m)

√√√√∑
w∈W

[(∑
i

φ̃i(wi)

)
− φ(w)

]2

(6)

We give a closed form analytic solution for this minimization problem when the setsWi are disjoint,
but first we can remove the square root from the optimization formula due to the monotonicity of
the square root for positive values. Hence we are left with the task of minimizing:

Figure 1: A schematic description of an inference proce-
dure along with the associated error. The procedure starts
with four functions (fa, fb, fc and fd) and decomposes
three functions, fa, fg and fj , with errors ε1, ε2 and ε3
respectively. In this example we assume that ε1 > ε2,
which results in an error rk = 1 + ε1, and assume that
1 + ε1 < (1 + ε2)(1 + ε3), which results in the errors
rm = ro = (1 + ε2)(1 + ε3).

Figure 2: An irreducible minor graph of a
4× 4 Ising model that can be obtained via VE
without creating functions of more than 3 vari-
ables. Applying MAS, only one function over
three variables needs to be decomposed into
two functions over overlapping sets of vari-
ables in order to complete inference using only
functions over three or less variables.

min
(φ̃1,...,φ̃m)

∑
w∈W

[(∑
i

φ̃i(wi)

)
− φ(w)

]2

(7)

We use the notation w ≈ wk to denote an instantiation W = w that is consistent with the instan-
tiation Wk = wk. To find the optimal value of φ̃i(wi) we differentiate Eq. 7 with respect to each

φ̃k(wk) and set to zero. Choosing the constraint
∑
w φ̃i(wi) =

∑
w
φ(w)

m in the resulting under-
constrained set of linear equations we get

φ̃k(wk) =

∑
w≈wk

φ(w)∏
i6=k
|Wi|

−
∑
i6=k

∑
w
φ(w)

m
∏
j

|Wj |

As the last term is independent of the index i we finally obtain

φ̃k(wk) =

∑
w≈wk

φ(w)∏
i6=k
|Wi|

−
(m− 1)

∑
w
φ(w)

m|W |
(8)

The second term of Eq. 8 is computed once for a decomposition operation. Denoting |W | = N this
term can be computed in O(N) time. Computing the first term of Eq. 8 also takes O(N) time but it
needs to be computed for every resulting function φ̃k, hence taking an overall time of O(Nm).

2.2.2 Minimizing the KL Divergence

The Kulback-liebert (KL) divergence is another common alternative measure used for optimization:

min
(φ̃1,...,φ̃m)

∑
w∈W

[∑
i

φ̃i(wi)

]
log
∑
i φ̃i(wi)
φ(w)

(9)

Although no closed form solution is known for this minimization problem, iterative algorithms were
devised for variational approximation, which start with arbitrary functions φ̃i(Wi) and converge
to a local minimum [16, 12]. Despite the drawbacks of unbounded convergence time and lack of
guarantee to converge to the global optimum, these methods have proven quite successful. In our
context this approach has the benefit of allowing overlapping sets Wi.

3 Applying MAS to Inference Algorithms

Our multiplicative approximation scheme offers a way to reduce the computational cost of inference
by decoupling variables via ε-decompositions. The fact that many existing inference algorithms
compute and utilize multiplicative factors during the course of computation means that the scheme
can be applied widely. The approach does require a mechanism to select functions to decompose,
however, the flexibility of the scheme allows a variety of alternative mechanisms. One simple cost-
focused strategy is to decompose a function whenever its size exceeds some threshold. An alternative
quality-focused strategy is to choose an ε and search for ε-decompositions Wi. Below we consider
the application of our approximation scheme to variable elimination with yet another selection strat-
egy. We note that heuristics for choosing approximate factorizations exist for the selection of disjoint
sets [28] and for overlapping sets [5] and could be utilized. The ideal application of our scheme is
likely to depend both on the specific inference algorithm and the application of interest.

3.1 Dynamic Decompositions

One family of decomposition strategies which are of particular interest, are those which allow for dy-
namic decompositions during the inference procedure. In this dynamic framework, MAS can be in-
corporated into known exact inference algorithms for graphical models, provided that local functions
can be bounded according to Eq. 2. A dynamic decomposition strategy applies ε-decompositions to
functions in which the original model is defined and to intermediate functions created in the course
of the inference algorithm, according to Eq. 1 or Eq. 3, based on the current state of the algorithm,
and the accuracy introduced by the possible decompositions.

Unlike other approximation methods, such as the variational approach [16] or the edge deletion ap-
proach [8], dynamic decompositions has the capability of decoupling two variables in some contexts
while maintaining their dependence in others. If we wish to restrict ourselves to functions over three
or less variables when performing inference on a 4 × 4 Ising model, the model in Figure 2 is an
inevitable minor, and from this point of the elimination, approximation is mandatory. In the vari-
ational framework, an edge in the graph should be removed, disconnecting the direct dependence
between two or more variables (e.g. removing the edge A-C would result in breaking the set ABC
into the sets AB and BC and breaking the set ACD into AD and CD). The same is true for the edge
deletion method, with the difference in the new potentials associated with the new sets. Dynamic
decompositions allow for a more refined decoupling, where the dependence is removed only in some
of the functions. In our example breaking the set ABC into AB and BC while keeping the set ACD
intact is possible and is also sufficient for reducing the complexity of inference to functions of no
more than three variables (the elimination order would be: A,B,F,H,C,E,D,G). Moreover, if decom-
posing the set ABC can be done with an error εABC , as defined in Eq. 2, then we are guaranteed not
to exceed this error for the entire approximate inference procedure. An extreme example will be the
functions for the sets ABC and ACD as appear in the tables of Figure 2. It is possible to decompose
the function over the set ABC into two functions over the sets AB and BC with an arbitrarily small
error, while the same is not possible for the function over the set ACD. Hence, in this example the
result of our method will be nearly equal to the solution of exact inference on the model, and the
theoretical error bounds will be arbitrarily small, while other approaches, such as the variational
method, can yield arbitrarily bad approximations.

We discuss how to incorporate MAS into the Variable Elimination (VE) algorithm for computing
the likelihood of a graphical model [9, 20]. In this algorithm variables V ∈ H are summed out
iteratively after multiplying all existing functions that include V , yielding intermediate functions
f(W ⊆ X) where V /∈ W . MAS can be incorporated into the VE algorithm by identifying ε-
decompositions for some of the intermediate functions f . This results in the elimination of f from
the pool of functions and adding instead the functions f̃i(Wi) = eφ̃i(Wi). Note that the sets Wi

are not necessarily disjoint and can have common variables. Using ε-decompositions reduces the
computational complexity, as some variables are decoupled in specific points during execution of
the algorithm. Throughout the algorithm the maximal error εmax introduced by the decompositions

Table 1: Accuracy and speedup for grid-like
models. Upper panel: attractive Ising mod-
els; Middle panel: repulsive Ising models;
Lower panel: Bayesian network grids with
random probabilities.

Model Num Accuracy Bounds Speedup DD time
Values (secs)

10× 10 5 2.4e-4 0.0096 49.2 0.04
10× 10 2 2.1e-4 0.0094 2.5 0.01
15× 15 5 1.2e-4 0.0099 223.3 0.21
15× 15 2 2.2e-4 0.0096 8.3 0.04
20× 20 2 1.2e-4 0.0095 12.9 0.08
25× 25 2 2.6e-5 0.0092 20.9 0.10
30× 30 2 5.7e-4 0.0097 236.7 0.11
10× 10 5 3.2e-4 0.0099 38.2 0.04
10× 10 2 3.5e-4 0.0098 2.3 0.01
15× 15 5 3.2e-3 0.0099 568.4 0.12
15× 15 2 8.6e-4 0.0094 7.2 0.05
20× 20 2 4.5e-4 0.0091 14.3 0.10
25× 25 2 3.1e-5 0.0094 22.8 0.11
30× 30 2 8.1e-5 0.0099 218.7 0.10
10× 10 2 3.0e-3 0.0098 1.1 0.01
12× 12 2 8.1e-3 0.0096 11.3 0.02
15× 15 2 1.7e-3 0.0098 201.4 0.05
18× 18 2 3.0e-4 0.0090 1782.8 0.15
20× 20 2 1.8e-3 0.0097 7112.9 1.30
10× 10 5 2.8e-5 0.0095 49.3 0.03
12× 12 5 5.5e-4 0.0096 458.6 0.05
7× 7 10 1.8e-4 0.0093 7.8 0.03
8× 8 10 1.4e-4 0.0098 8.4 0.15

Algorithm 1: DynaDecomp
Input: A model for n variables X = {X1, . . . , Xn} and

functions ψi(Di ⊆ X), that encodes
P (X) =

∏
i ψi(Di); A set E = X \H of observed

variables and their assignment E = e; An
elimination order R over the variables in H; scalars
M and η.

Output: The log-likelihood logP (e); an error ε.

Initialize: ε = 0; F ← {ψi(Di)}; I(ψi) = false;
for i = 1 to n do

k ← R[i];
T ← {f : f contains Xk, f ∈ F};
F ← F \ T ;
f ′ ←

∑
xk
⊗(T);

I(f ′) =
∧

f∈T I(f);
if |f ′| ≥M and I(f ′) = true then

(εf ′ , F̃)← �(f ′);
if εf ′ ≤ η then
∀f̃ ∈ F̃ I(f̃) = false;
F ← F ∪ F̃ ;
ε = max{ε, εf ′};

else
F ← F ∪ f ′;

else
F ← F ∪ f ′;

multiply all constant functions in F and put in p;
return log p, ε;

can be easily computed by associating functions with errors, as explained in Section 2.1. In our
experiments we restrict attention to non-compounded decompositions. Our algorithm decomposes
a function only if it is over a given size M , and if it introduces no more than η error. The ap-
proximating functions in this algorithm are strictly disjoint, of size no more than

√
M , and with

the variables assigned randomly to the functions. We call this algorithm DynaDecomp (DD) and
provide a pseudo-code in Algorithm 1. There we use the notation ⊗(T) to denote multiplication of
the functions f ∈ T , and �(f) to denote decomposition of function f . The outcome of �(f) is a
pair (ε, F̃) where the functions f̃i ∈ F̃ are over a disjoint set of variables.

We note that MAS can also be used on top of other common algorithms for exact inference in
probabilistic models which are widely used, thus gaining similar benefits as those algorithms. For
example, applying MAS to the junction tree algorithm [14] a decomposition can decouple vari-
ables in messages sent from one node in the junction tree to another, and approximate all marginal
distributions of single variables in the model in a single run, with similar guarantees on the error.
This extension is analogous to how the mini-clusters algorithm [17] extends the mini-bucket algo-
rithm [10].

4 Results

We demonstrate the power of MAS by reporting the accuracy and theoretical bounds for our Dy-
naDecomp algorithm for a variety of models. Our empirical study focuses on approximating the
likelihood of evidence, except when comparing to the results of Xing et. al. [28] on grid mod-
els. The quality of approximation is measured in terms of accuracy and speedup. The accuracy is
reported as max{ logL

log L̃
, log L̃

logL} − 1 where L is the likelihood and L̃ is the approximate likelihood
achieved by DynaDecomp. We also report the theoretical accuracy which is the maximum error
introduced by decomposition operations. The speedup is reported as a ratio of run-times for obtain-
ing the approximated and exact solutions, in addition to the absolute time of approximation. In all
experiments a random partition was used to decompose the functions, and the L2 norm optimization
introduced in Section 2.2.1 was applied to minimize the error. The parameter M was set to 10, 000
and the guaranteed accuracy η was set to 1%, however, as is evident from the results, the algorithm
usually achieves better accuracy.

We compared the performance of DynaDecomp with the any-time Mini-buckets (MB) algo-
rithm [10]. The parameters i and m, which are the maximal number of variables and functions
in a mini-bucket, were initially set to 3 and 1 respectively. The parameter ε was set to zero, not con-
straining the possible accuracy. Generally we allowed MB to run the same time it took DynaDecomp
to approximate the model, but not less than one iteration (with the initial parameters).

We used two types of grid-like models. The first is an Ising model with random attractive or repulsive
pair-wise potentials, as was used in [28]. When computing likelihood in these models we randomly
assigned values to 10% of the variables in the model. The other kind of grids were Bayesian net-
works where every variable Xij at position (i, j) in the grid has the variables Xi−1,j and Xi,j−1

as parents in the model. In addition, every variable Xij has a corresponding observed variable Yij
connected to it. Probabilities in these models were uniformly distributed between zero and one. In-
ference on these models, often used in computer vision [11], is usually harder than on Ising models,
due to reduced factorization. We used models where the variables had either two, five or ten values.
The results are shown in Table 1. In addition, we applied DynaDecomp to two 100 × 100 Ising
grid models with binary variables. Inference in these models is intractable. We estimate the time
for exact computation using VE on current hardware to be 3 · 1015 seconds. This is longer than
the time since the disappearance of the dinosaurs. Setting η to 2%, DynaDecomp computated the
approximated likelihood in 7.09 seconds for the attractive model and 8.14 seconds for the repulsive
one.

Comparing our results with those obtained by the MB algorithm with an equivalent amount of com-
putations, we find that on the average the accuracy of MB across all models in Tables 1 is 0.198
while the average accuracy of DynaDecomp is 9.8e−4, more than 200 times better than that of MB.
In addition the theoretical guarantees are more than 30% for MB and 0.96% for DynaDecomp, a
30-fold improvement. As a side note, the MB algorithm performed significantly better on attrac-
tive Ising models than on repulsive ones. To compare our results with those reported in [28] we
computed all the marginal probabilities (without evidence) and calculated the L1-based measure

∑
i,j

∑
xij

P (xij) − P̃ (xij). Running on the Ising models DynaDecomp obtained an average of
1.86e−5 compared to 0.003 of generalized belief propagation (GBP) and 0.366 of generalized mean
field (GMF). Although the run times are not directly comparable due to differences in hardware,
DynaDecomp average run-time was less than 0.1 seconds, while the run-time of GBP and GMF was
previously reported [28] to be 140 and 1.6 seconds respectively, on 8× 8 grids.

We applied our method to probabilistic phylogenetic models. Inference on these large models,
which can contain tens of thousands of variables, is used for model selection purposes. Previous
works [15, 26] have obtained upper and lower bounds on the likelihood of evidence in the models
suggested in [22] using variational methods, reporting an error of 1%. Using the data as in [26],
we achieved less than 0.01% error on average within a few seconds, which improves over previous
results by two orders of magnitude both in terms of accuracy and speedup.

In addition, we applied DynaDecomp to 24 models from the UAI’06 evaluation of probabilistic
inference repository [1] with η = 1%. Only models that did not have zeros and that our exact infer-
ence algorithm could solve in less than an hour were used. The average accuracy of DynaDecomp
on these models was 0.0038 with an average speedup of 368.8 and average run-time of 0.79 seconds.
We also applied our algorithm to two models from the CPCS benchmark (cpcs360b and cpcs422b).
DynaDecomp obtained an average accuracy of 0.008 versus 0.056 obtained by MB. We note that
the results obtained by MB are consistent with those reported in [10] for the MPE problem.

References
[1] Evaluation of probabilistic inference systems: http://tinyurl.com/3k9l4b, 2006.
[2] Bidyuk and Dechter. An anytime scheme for bounding posterior beliefs. AAAI 2006.
[3] Bidyuk and Dechter. Improving bound propagation. In ECAI 342–346, 2006.
[4] Cheng and Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in

large Bayesian networks. JAIR 13:155–188, 2000.
[5] Choi and Darwiche. A variational approach for approximating Bayesian networks by edge deletion. UAI

2006.
[6] Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. AI

42(2-3):393–405, 1990.
[7] Dagum and Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard. AI,

60(1):141–153, 1993.
[8] Darwiche, Chan, and Choi. On Bayesian network approximation by edge deletion. UAI 2005.
[9] Dechter. Bucket elimination: A unifying framework for reasoning. AI 113(1-2):41–85, 1999.

[10] Dechter and Rish. Mini-buckets:A general scheme for bounded inference. J.ACM 50:107–153, 2003.
[11] W. Freeman, W. Pasztor, and O. Carmichael. Learning low-level vision. IJCV 40:25–47, 2000.
[12] Geiger, Meek, and Wexler. A variational inference procedure allowing internal structure for overlapping

clusters and deterministic constraints. JAIR 27:1–23, 2006.
[13] Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling. UAI 1988.
[14] Jensen, Lauritzen, and Olesen. Bayesian updating in causal probabilistic networks by local computations.

Comp. Stat. Quaterly 4:269–282, 1990.
[15] Jojic, Jojic, Meek, Geiger, Siepel, Haussler, and Heckerman. Efficient approximations for learning phy-

logenetic hmm models from data. ISMB 2004.
[16] Jordan, Ghahramani, Jaakkola, and Saul. An introduction to variational methods for graphical models.

Machine Learning 37(2):183–233, 1999.
[17] Mateescu, Dechter, and Kask. Partition-based anytime approximation for belief updating. 2001.
[18] Boyd and Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[19] Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[20] Shachter, D’Ambrosio, and Del Favero. Symbolic probabilistic inference in belief networks. AAAI 1990.
[21] Shachter and Peot. Simulation approaches to general probabilistic inference on belief networks.UAI 1989.
[22] Siepel and Haussler. Combining phylogenetic and HMMs in biosequence analysis. RECOMB 2003.
[23] Wainwright, Jaakkola, and Willsky. A new class of upper bounds on the log partition function. IEEE

Trans. Info. Theory 51(7):2313–2335, 2005.
[24] Weiss. Belief propagation and revision in networks with loops. Technical Report AIM-1616, 1997.
[25] Wexler and Geiger. Importance sampling via variational optimization. UAI 2007.
[26] Wexler and Geiger. Variational upper bounds for probabilistic phylogenetic models. RECOMB 2007.
[27] Wexler and Meek. Inference for multiplicative models. UAI 2008.
[28] Xing, Jordan, and Russell. Graph partition strategies for generalized mean field inference. UAI 2004.

