Particle Filter-based Policy Gradient in POMDPs
Supplementary material

1 Proof of Proposition 1

Proposition 1 (Bias-variance trade-off)Assume thaf (6) is three times continuously differentiable
in a small neighborhood o, then the asymptotic (whel — oo) bias of the naive FD estimate

1M is of orderO(h?) and its variance i€)(N ' M ~1h~2).
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Proof. Thanks to the consistency property of PE%limN_,oo o
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a three-order Taylor expansions.6f we have— 0J(0) + =555~ & +o(h?). We
deduce the asymptotic bias of the naive FD grad|ent estimafdimy_.. 1,""] — 0J(0) =
O(h?).
Now, since the two stochastic estimatof§ (¢ + h) and Jjjn,(e — h) are independent, the

variance of ;" is i (VarJNw, (0 + h)] + VarlJNw,, (8 — h)]). Now, an IPS satis-

fies a Central Limit Theorem (see e.g. (Del Moral, 2004; Doudvi&ulines, 2008) for de-

tails), thus VapJY (0)] ~n—oo 02(8) /N, wheres?(6) is the asymptotic variance. We deduce that
2

Varl [y ™M)~ a1 (c000.0) Tz .

2 Proof of Proposition 2

Proposition 2. Under weak conditions oy (see (Moral & Miclo, 2000) for general assumptions
or (Douc & Moulines, 2008) for refined assumptions), thergsex neighborhood of, such that
for any 6’ in this neighborhoodb%,(f) defined by (3) is a consistent estimatorbf- (f), i.e.

limy oo b7y, (f) = bso:(f) @lmost surely.

Proof. For any®’, the belief feature is:
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where we used the short notatign(d) to denoteg(X,(6),Y;(#)). Now we use the general PF
convergence properties for Feynman-Kac (FK) models (seardM& Miclo, 2000; Del Moral,
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2004) or (Douc & Moulines, 2008)) which, applied to a FK flowtevMarkov chainX.;, (random)
potential functiong(X ), and test functiot (X1.;), states that the PF estimat}ézzij\;1 H(xi,)

(o) T, (X))
is consistent withe =t Loy €)1

def IT:_, 9(Xs(0),Ys(0"))
Applying this result successively to the test functiin= f(X(¢")) Htll ERORAC)]

def TT5_; 9(Xa(0)),Ya(0") \\s ; def
= H;ilg(xs(e),ys(e)) , with the potentiab)(X;) = ¢(X(9),Ys(0)), we deduce that the PF
estimator:
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is consistent withb, ¢ (f). The denominator being the product of the likelihood raifobounded
away from0 since from the smoothness assumption on all necessaryidoactthe limit of

I;I[tt ; Z()f( ((0)) Y((e) whend’ — 0 exists and equals. Thus, in a neighborhood @, the PF es-
=1

timator (3) is well defined and is a consistent estimatdr, @f(f). O

and to

F(xi(07) = b7 (f)
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