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A Convolution with Gaussian kernel functions

For the covariance matrix of the latent functions we employ
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Applying successively the result for the multiplication of Gaussian distributions [3], the covariance functions
in expressions (3) and (4) are also Gaussian covariances given by
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B Matrix Derivatives

We follow the notation of [3] obtaining similar results to [7]. This notation allows us to apply the chain rule
for matrix derivation in a straight-forward manner. Let’s defineG: = vecG, wherevec is the vectorization
operator over the matrixG. For a functionL the equivalence between∂L
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the matrix inversion lemma and its equivalent form for determinants, expression (10) can be written as
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where the subindex inLE stands for those terms ofL which depend onE, G is eitherKf ,f , Ku,f or Ku,u and
δGK is zero ifG is equal toKf ,f and one in other case. Next we present expressions for each partial derivative
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andTD andTA arevectorized transpose matrices[3] and we have not included



their dimensions to keep the notation clearer. We can replace the above expressions in (11) to find the corre-
sponding derivatives, so
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