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Abstract

We describe an efficient learning procedure for multilayer generative models that
combine the best aspects of Markov random fields and deep, directed belief nets.
The generative models can be learned one layer at a time and when learning is
complete they have a very fast inference procedure for computing a good approx-
imation to the posterior distribution in all of the hidden layers. Each hidden layer
has its own MRF whose energy function is modulated by the top-down directed
connections from the layer above. To generate from the model, each layer in turn
must settle to equilibrium given its top-down input. We show that this type of
model is good at capturing the statistics of patches of natural images.

1 Introduction

The soldiers on a parade ground form a neat rectangle by interacting with their neighbors. An officer
decides where the rectangle should be, but he would be ill-advised to try to tell each individual sol-
dier exactly where to stand. By allowing constraints to be enforced by local interactions, the officer
enormously reduces the bandwidth of top-down communication required to generate a familiar pat-
tern. Instead of micro-managing the soldiers, the officer specifies an objective function and leaves
it to the soldiers to optimise that function. This example of pattern generation suggests that a multi-
layer, directed belief net may not be the most effective way to generate patterns. Instead of using
shared ancestors to create correlations between the variables within a layer, it may be more efficient
for each layer to have its own energy function that is modulated by directed, top-down input from
the layer above. Given the top-down input, each layer can then use lateral interactions to settle on
a good configuration and this configuration can then provide the top-down input for the next layer
down. When generating an image of a face, for example, the approximate locations of the mouth
and nose might be specified by a higher level and the local interactions would then ensure that the
accuracy of their vertical alignment was far greater than the accuracy with which their locations
were specified top-down.

In this paper, we show that recently developed techniques for learning deep belief nets (DBN’s) can
be generalized to solve the apparently more difficult problem of learning a directed hierarchy of
Markov Random Fields (MRF’s). The method we describe can learn models that have many hidden
layers, each with its own MRF whose energy function is conditional on the values of the variables in
the layer above. It does not require detailed prior knowledge about the data to be modeled, though
it obviously works better if the architecture and the types of latent variable are well matched to the
task.
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2 Learning deep belief nets: An overview

The learning procedure for deep belief nets has now been described in several places (Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007) and will only be sketched here. It relies
on a basic module, called a restricted Boltzmann machine (RBM) that can be trained efficiently
using a method called “contrastive divergence” (Hinton, 2002).

2.1 Restricted Boltzmann Machines

An RBM consists of a layer of binary stochastic “visible” units connected to a layer of binary,
stochastic “hidden” units via symmetrically weighted connections. A joint configuration, (v,h) of
the visible and hidden units has an energy given by:

E(v,h) = −
∑

i∈visibles

bivi −
∑

j∈hiddens

bjhj −
∑

i,j

vihjwij (1)

wherevi, hj are the binary states of visible uniti and hidden unitj, bi, bj are their biases andwij is
the symmetric weight between them. The network assigns a probability to every possible image via
this energy function and the probability of a training image can be raised by adjusting the weights
and biases to lower the energy of that image and to raise the energy of similar, reconstructed images
that the network would prefer to the real data.

Given a training vector,v, the binary state,hj , of each feature detector,j, is set to1 with probability
σ(bj +

∑
i viwij), whereσ(x) is the logistic function1/(1 + exp(−x)), bj is the bias ofj, vi is

the state of visible uniti, andwij is the weight betweeni and j. Once binary states have been
chosen for the hidden units, a reconstruction is produced by setting eachvi to 1 with probability
σ(bi +

∑
j hjwij). The states of the hidden units are then updated once more so that they represent

features of the reconstruction. The change in a weight is given by

∆wij = ǫ(〈vihj〉data
− 〈vihj〉recon

) (2)

whereǫ is a learning rate,〈vihj〉data
is the fraction of times that visible uniti and hidden unitsj

are on together when the hidden units are being driven by data and〈vihj〉recon
is the corresponding

fraction for reconstructions. A simplified version of the same learning rule is used for the biases.
The learning works well even though it is not exactly following the gradient of the log probability
of the training data (Hinton, 2002).

2.2 Compositions of experts

A single layer of binary features is usually not the best way to capture the structure in the data. We
now show how RBM’S can be composed to create much more powerful, multilayer models.

After using an RBM to learn the first layer of hidden features we have an undirected model that
definesp(v,h) via the energy function in Eq. 1. We can also think of the model as definingp(v,h)
by defining a consistent pair of conditional probabilities,p(h|v) andp(v|h) which can be used to
sample from the model distribution. A different way to express what has been learned isp(v|h)
andp(h). Unlike a standard directed model, thisp(h) does not have its own separate parameters.
It is a complicated, non-factorial prior onh that is defined implicitly by the weights. This peculiar
decomposition intop(h) andp(v|h) suggests a recursive algorithm: keep the learnedp(v|h) but
replacep(h) by a better prior overh, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior overh.

We can sample from this average conditional posterior by simply applyingp(h|v) to the training
data. The sampledh vectors are then the “data” that is used for training a higher-level RBM that
learns the next layer of features. We could initialize the higher-level RBM model by using the same
parameters as the lower-level RBM but with the roles of the hidden and visible units reversed. This
ensures thatp(v) for the higher-level RBM starts out being exactly the same asp(h) for the lower-
level one. Provided the number of features per layer does not decrease, Hinton et al. (2006) show
that each extra layer increases a variational lower bound on the log probability of the data.

The directed connections from the first hidden layer to the visible units in the final, composite
graphical model are a consequence of the the fact that we keep thep(v|h) but throw away thep(h)
defined by the first level RBM. In the final composite model, the only undirected connections are
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between the top two layers, because we do not throw away thep(h) for the highest-level RBM. To
suppress noise in the learning signal, we use the real-valued activationprobabilities for the visible
units of all the higher-level RBM’s, but to prevent hidden units from transmitting more than one bit
of information from the data to its reconstruction, we always use stochastic binary values for the
hidden units.

3 Semi-restricted Boltzmann machines

For contrastive divergence learning to work well, it is important for the hidden units to be sampled
from their conditional distribution given the data or the reconstructions. It not necessary, however,
for the reconstructions to be sampled from their conditional distribution given the hidden states. All
that is required is that the reconstructions have lower free energy than the data. So it is possible to
include lateral connections between the visible units and to create reconstructions by taking a small
step towards the conditional equilibrium distribution given the hidden states. If we are using mean-
field activities for the reconstructions, we can move towards the equilibrium distribution by using a
few damped mean-field updates (Welling and Hinton, 2002). We call this a semi-restricted Boltz-
mann machine (SRBM). The visible units form a conditional MRF with the biases of the visible
units being determined by the hidden states. The learning procedure for the visible to hidden con-
nections is unaffected and the same learning procedure applies to the lateral connections. Explicitly,
the energy function for a SRBM is given by

E(v,h) = −
∑

i∈visibles

bivi −
∑

j∈hiddens

bjhj −
∑

i,j

vihjwij −
∑

i<i′

vivi′Lii′ (3)

and the update rule for the lateral connections is

∆Lii′ = ǫ(〈vivi′〉data − 〈vivi′〉recon) (4)

Semi-restricted Boltzmann machines can be learned greedily and composed to form a directed hi-
erarchy of conditional MRF’s. To generate from the composite model we first get an equilbrium
sample from the top level SRBM and then we get an equilibrium sample from each lower level MRF
in turn, given the top-down input from the sample in the layer above. The settling at each interme-
diate level does not need to explore a highly multi-modal energy landscape because the top-down
input has already selected a good region of the space. The role of the settling is simply to sharpen
the somewhat vague top-down specification and to ensure that the resulting configuration repects
learned constraints. Each intermediate level fills in the details given the larger picture defined by the
level above.

4 Inference in a directed hierarchy of MRF’s

In a deep belief network, inference is very simple and very fast because of the way in which the
network is learned. Rather than first deciding how to represent the data and then worrying about in-
ference afterwards, deep belief nets restrict themselves to learning representations for which accurate
variational inference can be done in a single bottom-up pass. Each layer computes an approximate
sample from its posterior distribution given the activities in the layer below. This can be done with
a single matrix multiply using the bottom-up “recognition” connections that were originally learned
by an RBM but are no longer part of the generative model. The recognition connections compute
an approximation to theproduct of a data-dependent likelihood term coming from the layer below
and a data-independent prior term that depends on the learned parameters of all the higher layers.
Each of these two terms can contain strong correlations, but the way in which the model is learned
ensures that these correlations cancel each other out so that the true posterior distribution in each
layer is very close to factorial and very simple to compute from the activities in the layer below.

The inference process is unaltered by adding an MRF at each hidden layer. The role of the MRF’s
is to allow the generative process to mimic the constraints that are obeyed by the variables within a
layer when the network is being driven bottom-up by data. During inference, these constraints are
enforced by the data. From a biological perspective, it is very important for perceptual inference to
be fast and accurate, so it is very good that it does not involve any kind of iterative settling or belief
propagation. The MRF’s are vital for imposing constraints during generation and for whitening the
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learning signal so that weak higher-order structure is not masked by strong pairwise correlations.
During perceptual inference, however, the MRF’s are mere spectators.

5 Whitening without waiting

Data is often whitened to prevent strong pairwise correlations from masking weaker but more in-
teresting structure. An alternative to whitening the data is to modify the learning procedure so that
it actsas if the data were whitened and ignores strong pairwise correlations when learning the next
level of features. This has the advantage that perceptual inference is not slowed down by an explicit
whitening stage. If the lateral connections ensure that a pairwise correlation in the distribution of the
reconstructions is the same as in the data distribution, that correlation will be ignored by contrastive
divergence since the learning is driven by the differences between the two distributions. This also
explains why different hidden units learn different features even when they have the same connec-
tivity: once one feature has made one aspect of the reconstructions match the data, there is no longer
any learning signal for another hidden unit to learn that same aspect.

Figure 1 shows how the features learned by the hidden units are affected by the presence of lateral
connections between the visible units. Hidden units are no longer required for modeling the strong
pairwise correlations between nearby pixels so they are free to discover more interesting features
than the simple on-center off-surround fetaures that are prevalent when there are no connections
between visible units.

(A) (B)

Figure 1: (A) A random sample of the filters learned by an RBM trained on 60,000 images of hand-
written digits from the MNIST database (see Hinton et al. (2006) for details). (B) A random sample
of the filters learned by an SRBM trained on the same data. To produce each reconstruction, the
SRBM used 5 damped mean-field iterations with the top-down input from the hidden states fixed.
Adding lateral connections between the visible units changes the types of hidden features that are
learned. For simplicity each visible unit in the SRBM was connected to all 783 other visible units,
but only the local connections developed large weights and the lateral connections to each pixel
formed a small on-center off-surround field centered on the pixel. Pixels close to the edge of the
image that were only active one or two times in the whole training set behaved very differently:
They learned to predict the whole of the particular digit that caused them to be active.

6 Modeling patches of natural images

To illustrate the advantages of adding lateral connections to the hidden layers of a DBN we use
the well-studied task of modelling the statistical structure of images of natural scenes (Bell and
Sejnowski, 1997; Olshausen and Field, 1996; Karklin and Lewicki, 2005; Osindero et al., 2006; Lyu
and Simoncelli, 2006). Using DBN’s, it is easy to build overcomplete and hierchical generative
models of image patches. These are able to capture much richer types of statistical dependency than
traditional generative models such as ICA. They also have the potential to go well beyond the types
of dependencies that can be captured by other, more sophisticated, multi-stage approaches such as
(Karklin and Lewicki, 2005; Osindero et al., 2006; Lyu and Simoncelli, 2006).

6.1 Adapting Restricted Boltzmann machines to real-valued data

Hinton and Salakhutdinov (2006) show how the visible units of an RBM can be modified to allow it
to model real-valued data using linear visible variables with Gaussian noise, but retaining the binary
stochastic hidden units. The learning procedure is essentially unchanged especially if we use the
mean-field approximation for the visible units which is what we do.
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Two generative DBN models, one with and one without lateral connectivity, were trained using
the updates from equations 2 and 4. The training data used consisted of 150,00020 × 20 patches
extracted from images of natural scenes taken from the collection of Van Hateren1. The raw im-
age intensities were pre-processed using a standard set of operations — namely an initial log-
transformation, and then a normalisation step such that each pixel had zero-mean across the training
set. The patches were then whitened using a Zero-Phase Components analysis (ZCA) filter-bank.
The set of whitening filters is obtained by rotating the data into a co-ordinate system aligned with
the eigenvectors of the covariance matrix, then rescaling each component by the inverse square-root
of the correspoding eigenvalue, then rotating back into the original pixel co-ordinate system.

Using ZCA has a similar effect to learning lateral connections between pixels (Welling and Hinton,
2002). We used ZCA whitened data for both models to make it clear that the advantage of lateral
connections is not just caused by their ability to whiten the input data. Because the data was whitened
we did not include lateral connections in the bottom layer of the lateral DBN. The results presented
in the figures that follow are all shown in “unwhitened pixel-space”, i.e. the effects of the whitening
filter are undone for display purposes.

The models each had 2000 units in the first hidden layer, 500 in the second hidden layer and 1000
units in the third hidden layer. The generative abilities of both models are very robust against
variations in the number of hidden units in each layer, though it seems to be important for the
top layer to be quite large. In the case where lateral connections were used, the first and second
hidden layers of the final, composite model were fully laterally connected.

Data was taken in mini-batches of size 100, and training was performed for 50 epochs for the first
layer and 30 epochs for the remaining layers. A learning rate of10−3 was used for the interlayer
connections, and half that rate for the lateral connections. Multiplicative weight decay of10−2 mul-
tiplied by the learning rate was used, and a momentum factor of0.9 was employed. When training
the higher-level SRBM’s in the model with lateral connectivity, 30 parallel mean field updates were
used to produce the reconstructions with the top-down input from the hidden states held constant.
Each mean field update set the new activity of every “visible” unit to be0.2 times the previous ac-
tivity plus 0.8 times the value computed by applying the logistic function to the total input received
from the hidden units and the previous states of the visible units.

Learned filters

Figure 2 shows a random sample of the filters learned using an RBM with Gaussian visible units.
These filters are the same for both models. This representation is5× overcomplete.

Figure 2: Filters from the first hidden layer. The results are generally similar to previous work on
learning representations of natural image patches. The majority of the filters are tuned in location,
orientation, and spatial frequency. The joint space of location and orientation is approximately
evenly tiled and the spatial frequency responses span a range of about four octaves.

6.1.1 Generating samples from the model

The same issue that necessitates the use of approximations when learning deep-networks – namely
the unknown value of the partition function – also makes it difficult to objectively assess how well
they fit the data in the absence of predictive tasks such as classification. Since our main aim is to
demonstrate the improvement in data modelling ability that lateral connections bring to DBN’s, we
simply present samples from similarly structured models, with and without lateral connections, and
compare these samples with real data.

1http://hlab.phys.rug.nl/imlib/index.html
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Ten-thousand data samples were generated by randomly initialising the top-level (S)RBM states and
then running 300 iterations of a Gibbs sampling scheme between the top two layers. For models
without lateral connections, each iteration of the scheme consisted of a full parallel-update of the
top-most layer followed by a full parallel-update of the penultimate layer. In models with lateral
connections, each iteration consisted of a full parallel-update of the top-most layer followed by 50
rounds of sequential stochastic updates of each unit in the penultimate layer, under the influence of
the previously sampled top-layer states. (A different random ordering of units was drawn in each
update-round.) After running this Markov Chain we then performed an ancestral generative pass
down to the data layer. In the case of models with no lateral connections, this simply involved
sampling from the factorial conditional distribution at each layer. In the case of models with lateral
connections we performed 50 rounds of randomly-ordered, sequential stochastic updates under the
influence of the top-down inputs from the layer above. In both cases, on the final hidden layer update
before generating the pixel values, mean-field updates were used so that the data was generated using
the real-valued probabilities in the first hidden layer rather than stochastic-binary states.

(A) (B)

(C) (D)

Figure 3: (A) Samples from a model without lateral connections. (B) Samples from a model with
lateral connections. (C) Examples of actual data, drawn at random. (D) Examples of actual data,
chosen to have closest cosine distance to samples from panel (B).

Figure 3 shows that adding undirected lateral interactions within each intermediate hidden layer of
a deep belief net greatly improves the model’s ability to generate image patches that look realistic.
It is evident from the figure that the samples from the model with lateral connections are much more
similar to the real data and contain much more coherent, long-range structure. Belief networks with
only directed connections have difficulty capturing spatial constraints between the parts of an image
because, in a directed network, the only way to enforce constraints is by using observed descendants.
Unobserved ancestors can only be used to model shared sources of variation.

6.1.2 Marginal and pairwise statistics

In addition to the largely subjective comparisons from the previous section, if we perform some
simple aggregate analyses of the synthesized data we see that the samples from the model with
lateral connections are objectively well matched to those from true natural images. In the right-hand
column of figure 4 we show histograms of pixel inensities for real data and for data generated by the
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two models. The kurtosis is8.3 for real data,7.3 for the model with lateral connections, and3.4 for
the model with no lateral connections. If we make a histogram of the outputs of all of the filters in
the first hidden layer of the model, we discover that the kurtosis is10.5 on real data,10.3 on image
patches generated by the model with lateral connections, and3.8 on patches generated by the other
model.

Columns one through five of figure 4 show the distributions of the response of one filter conditional
on the response of a second filter. Again, for image patches generated with lateral connections the
statistics are similar to the data and without lateral connections they are quite different.

Figure 4: Each row shows statistics computed from a differentset of 10,000 images. The first
row is for real data. The second row is for image patches generated by the model with lateral
interactions. The third row is for patches generated without lateral interactions. Column six shows
histograms of pixel intensities. Columns 1-5 show conditional filter responses, in the style suggested
in (Wainwright and Simoncelli, 2000), for two different gabor filters applied to the sampled images.
In columns 1-3 the filters are 2, 4, or 8 pixels apart. In column 4 they are at the same location but
orthogonal orientations. In column 5 they are at the same location and orientation but one octave
apart in spatial frequency.

7 Discussion

Our results demonstrate the advantages of using semi-restricted Boltzmann machines as the building
blocks when building deep belief nets. The model with lateral connections is very good at capturing
the statistical structure of natural image patches. In future work we hope to exploit this in a number
of image processing tasks that require a good prior over image patches.

The models presented in this paper had complete lateral connectivity — largely for simplicity in
MATLAB. Such a strategy would not be feasible were we to significantly scale up our networks.
Fortunately, there is an obvious solution to this — we can simply restrict the majority of lateral
interactions to a local neighbourhood and concomittently have the hidden units focus their attention
on spatially localised regions of the image. A topographic ordering would then exist throughout the
various layers of the hierarchy. This would greatly reduce the computational load and it corresponds
to a sensible prior over image structures, especially if the local regions get larger as we move up the
hierarchy. Furthermore, it would probably make the process of settling within a layer much faster.

One limitation of the model we have described is that the top-down effects can only change the
effective biases of the units in the Markov random field at each level. The model becomes much
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more powerful if top-down effects can modulate the interactions. For example, an “edge” can be
viewed as a breakdown in the local correlational structure of the image: pixel intensities cannot be
predicted from neighbors on the other side of an object boundary. A hidden unit that can modulate
the pairwise interactions rather than just the biases can form a far more abstract representation of an
edge that is not tied to any particular contrast or intensity (Geman and Geman, 1984). Extending our
model to this type of top-down modulation is fairly straightforward. Instead of using weightswij

that contribute energies−vivjwij we use weightswijk that contribute energies−vivjhkwijk. This
allows the binary state ofhk to gate the effective weight between visible unitsi andj. Memisevic
and Hinton (2007) show that the same learning methods can be applied with a single hidden layer and
there is no reason why such higher-order semi-restricted Boltzmann machines cannot be composed
into deep belief nets.

Although we have focussed on the challenging task of modeling patches of natural images, we
believe the ideas presented here are of much more general applicability. DBN’s without lateral con-
nections have produced state of the art results in a number of domains including document retrieval
(Hinton and Salakhutdinov, 2006), character recognition (Hinton et al., 2006), lossy image compres-
sion (Hinton and Salakhutdinov, 2006), and the generation of human motion (Taylor et al., 2007).
Lateral connections may help in all of these domains.
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