Random Sampling of States in Dynamic
Programming

Christopher G. Atkeson and Benjamin Stephens
Robotics Institute, Carnegie Mellon University
cgalcmu.edu, bstephenscmu.edu
www.cs.cmu.edu/~cga, www.cs.cmu.edu/~bstephel

Abstract

We combine three threads of research on approximate dynamic programming:
sparse random sampling of states, value function and policy approximation using
local models, and using local trajectory optimizers to globally optimize a policy
and associated value function. Our focus is on finding steady state policies for
deterministic time invariant discrete time control problems with continuous states
and actions often found in robotics. In this paper we show that we can now solve
problems we couldn’t solve previously.

1 Introduction

Optimal control provides a potentially useful methodology to design nonlinear control laws (poli-
cies) u = u(x) which give the appropriate action u for any state x. Dynamic programming provides
a way to find globally optimal control laws, given a one step cost (a.k.a. “reward” or “loss”) function
and the dynamics of the problem to be optimized. We focus on control problems with continuous
states and actions, deterministic time invariant discrete time dynamics x; = f(x;,uy), and a time
invariant one step cost function L(x,u). Policies for such time invariant problems will also be time
invariant. We assume we know the dynamics and one step cost function. Future work will address
simultaneously learning a dynamic model, finding a robust policy, and performing state estimation
with an erroneous partially learned model. One approach to dynamic programming is to approximate
the value function V (x) (the optimal total future cost from each state V (x) = ¥°_, L(Xk, ux)), and to
repeatedly solve the Bellman equation V(x) = miny (L(x,u) + V (f(x,u))) at sampled states x until
the value function estimates have converged to globally optimal values. We explore approximating
the value function and policy using many local models.

An example problem: We use one link pendulum swingup as an example problem in this intro-
duction to provide the reader with a visualizable example of a value function and policy. In one
link pendulum swingup a motor at the base of the pendulum swings a rigid arm from the downward
stable equilibrium to the upright unstable equilibrium and balances the arm there (Figure 1). What
makes this challenging is that the one step cost function penalizes the amount of torque used and
the deviation of the current position from the goal. The controller must try to minimize the total
cost of the trajectory. The one step cost function for this example is a weighted sum of the squared
position errors (0: difference between current angles and the goal angles) and the squared torques
T: L(x,u) = 0.16°T + 12T where 0.1 weights the position error relative to the torque penalty, and
T is the time step of the simulation (0.01s). There are no costs associated with the joint velocity.
Figure 2 shows the value function and policy generated by dynamic programming.

One important thread of research on approximate dynamic programming is developing representa-
tions that adapt to the problem being solved and extend the range of problems that can be solved
with a reasonable amount of memory and time. Random sampling of states has been proposed by a
number of researchers [1, 2, 3, 4, 5, 6, 7]. In our case we add new randomly selected states as we

Figure 1: Configurations from the simulated one link pendulum optimal trajectory every half a second and at
the end of the trajectory.

solve the problem, allowing the “grid” that results to reflect the local complexity of the value func-
tion as we generate it. Figure 2:right shows such a randomly generated set of states superimposed
on a contour plot of the value function for one link swingup.

Another important thread in our work on applied dynamic programming is developing ways for grids
or random samples to be as sparse as possible. One technique that we apply here is to represent full
trajectories from each sampled state to the goal, and to refine each trajectory using local trajectory
optimization [8]. Figure 2:right shows a set of optimized trajectories from the sampled states to the
goal. One key aspect of the local trajectory optimizer we use is that it provides a local quadratic
model of the value function and a local linear model of the policy at the sampled state. These local
models help our function approximators handle sparsely sampled states. To obtain globally optimal
solutions, we incorporate exchange of information between non-neighboring sampled states.

On what problems will the proposed approach work? We believe our approach can discover
underlying simplicity in many typical problems. An example of a problem that appears complex but
is actually simple is a problem with linear dynamics and a quadratic one step cost function. Dy-
namic programming can be done for linear quadratic regulator (LQR) problems even with hundreds
of dimensions and it is not necessary to build a grid of states [9]. The cost of representing the value
function is quadratic in the dimensionality of the state. The cost of performing a “sweep” or update
of the value function is at most cubic in the state dimensionality. Continuous states and actions
are easy to handle. Perhaps many problems, such as the examples in this paper, have simplifying
characteristics similar to LQR problems. For example, problems that are only “slightly”” nonlinear
and have a locally quadratic cost function may be solvable with quite sparse representations. One
goal of our work is to develop methods that do not immediately build a hugely expensive represen-
tation if it is not necessary, and attempt to harness simple and inexpensive parallel local planning
to solve complex planning problems. Another goal of our work is to develop methods that can take
advantage of situations where only a small amount of global interaction is necessary to enable local
planners capable of solving local problems to find globally optimal solutions.

2 Related Work

Random state selection: Random grids and random sampling are well known in numerical inte-
gration, finite element methods, and partial differential equations. Rust applied random sampling
of states to dynamic programming [1, 10]. He showed that random sampling of states can avoid
the curse of dimensionality for stochastic dynamic programming problems with a finite set of dis-
crete actions. This theoretical result focused on the cost of computing the expectation term in the
stochastic version of the Bellman equation. [11] claim the assumptions used in [1] are unrealistically
restrictive, and [12] point out that the complexity of Rust’s approach is proportional to the Lipschitz
constant of the problem data, which often increases exponentially with increasing dimensions. The
practicality and usefulness of random sampling of states in deterministic dynamic programming with
continuous actions (the focus of our paper) remains an open question. We note that deterministic
problems are usually more difficult to solve since the random element in the stochastic dynamics
smooths the dynamics and makes them easier to sample. Alternatives to random sampling of states
are irregular or adaptive grids [13], but in our experience they still require too many representational
resources as the problem dimensionality increases.

In reinforcement learning random sampling of states is sometimes used to provide training data for
function approximation of the value function. Reinforcement learning also uses random exploration
for several purposes. In model-free approaches exploration is used to find actions and states that lead
to better outcomes. This process is somewhat analogous to the random state sampling described in
this paper for model-based approaches. In model-based approaches, exploration is also used to
improve the model of the task. In our paper it is assumed a model of the task is available, so this
type of exploration is not necessary.

Value function for one link example Policy for one link example random initial st nd trajectories for one link example

velocity (r/s)

-
position () s

s
position (r) E s - 2
‘ velocity (r/s) ® velocity (r/s) position (r)

*

Figure 2: Left and Middle: The value function and policy for a one link pendulum swingup. The optimal
trajectory is shown as a yellow line in the value function plot, and as a black line with a yellow border in the
policy plot. The value function is cut off above 20 so we can see the details of the part of the value function that
determines the optimal trajectory. The goal is at the state (0,0). Right: Random states (dots) and trajectories
(black lines) used to plan one link swingup, superimposed on a contour map of the value function.

In the field of Partially Observable Markov Decision Processes (POMDPs) there has been some
work on randomly sampling belief states, and also using local models of the value function and its
first derivative at each randomly sampled belief state (for example [2, 3, 4, 5, 6, 7]). Thrun explored
random sampling of belief states where the underlying states and actions were continuous [7]. He
used a nearest neighbor scheme to perform value function interpolation, and a coverage test to decide
whether to accept a new random state (is a new random state far enough from existing states?) rather
than a surprise test (is the value of the new random state predicted incorrectly?).

In robot planning for obstacle avoidance random sampling of states is now quite popular [14]. Proba-
bilistic Road Map (PRM) methods build a graph of plans between randomly selected states. Rapidly
Exploring Random Trees (RRTs) grow paths or trajectories towards randomly selected states. In
general it is difficult to modify PRM and RRT approaches to find optimal paths, and the resulting
algorithms based on RRTs are very similar to A* search.

3 Combining Random State Sampling With Local Optimization

The process of using the Bellman equation to update a representation of the value function by mini-
mizing over all actions at a state is referred to as value iteration. Standard value iteration represents
the value function and associated policy using multidimensional tables, with each entry in the table
corresponding to a particular state. In our approach we randomly select states, and associate with
each state a local quadratic model of the value function and a local linear model of the policy. Our
approach generalizes value iteration, and has the following components: 1. There is a “global”
function approximator for both the value function and the policy. In our current implementation the
value function and policy are represented through a combination of sampled and parametric repre-
sentations, building global approximations by combining local models. 2. It is possible to estimate
the value of a state in two ways. The first is to use the approximated value function. The second is
our analog of using the Bellman equation: use the cost of a trajectory starting from the state under
consideration and following the current global policy. The trajectory is optimized using local tra-
jectory optimization. 3. As in a Bellman update, there is a way to globally optimize the value of
a state by considering many possible “actions”. In our approach we consider many local policies
associated with different stored states.

Taking advantage of goal states: For problems with goal states there are several ways to speed
up convergence. In cases where LQR techniques apply [9], we use the policy obtained by solving
the corresponding LQR control problem at the goal as the default policy everywhere, to which the
policy computed by dynamic programming is added. [15] plots an example of a default policy and
the policy generated by dynamic programming for comparison. We limit the outputs of this default
policy. In setting up the goal LQR controller, a radius is established and tested within which the
goal LQR controller always works and achieves close to the predicted optimal cost. This has the
effect of making of enlarging the goal. If the dynamic programming process can get within the LQR
radius of the goal, it can use only the default policy to go the rest of the way. If it is not possible to
create a goal LQR controller due to a hard nonlinearity, or if there is no goal state, it does not have
to be done as the goal controller merely accelerates the solution process. The proposed technique
can be generalized in a straightforward way to use any default goal policy. In this paper the swingup

problems use an LQR default policy, which was limited for each action dimension to +=5Nm. For
the balance problem we did not use a default policy. We note that for the swingup problems shown
here the default LQR policy is capable of balancing the inverted pendulum at the goal, but is not
capable of swinging up the pendulum to the goal.

We also initially only generate the value function and policy in the region near the goal. This solved
region is gradually increased in size by increasing a value function threshold. Examples of regions
bounded by a constant value are shown by the value function contours in Figure 2. [16] describes
how to handle periodic tasks which have no goal states, and also discontinuities in the dynamics.

Local models of the value function and policy: We need to represent value functions as sparsely
as possible. We propose a hybrid tabular and parametric approach: parametric local models of the
value function and policy are represented at sampled locations. This representation is similar to
using many Taylor series approximations of a function at different points. At each sampled state x”
the local quadratic model for the value function is:

S O .
VP(x) = VY + VPR + 5xTv)g;x (1)
where X = x — X? is the vector from the stored state x?, V(f’ is the constant term of the local model,

VP is the first derivative of the local model (and the value function) at x”, and V is the second
derivative of the local model (and the value function) at x”. The local linear model for the policy is:

v’ (x)—uO K”x 2)

where uf] is the constant term of the local policy, and K? is the first derivative of the local policy and
also the gain matrix for a local linear controller.

Creating the local model: These local models of the value function can be created using Dif-
ferential Dynamic Programming (DDP) [17, 18, 8, 16]. This local trajectory optimization process
is similar to linear quadratic regulator design in that a local model of the value function is pro-
duced. In DDP, value function and policy models are produced at each point along a trajectory.
Suppose at a point (x',u’) we have 1) a local second order Taylor series approximation of the opti-
mal value function: Vi(x) ~ Vi+ Vik+ %f(TV)fxf(where & = x — x'. 2) a local second order Taylor
series approximation of the robot dynamics, which can be learned using local models of the dy-
namics (f;, and f}, correspond to A and B of the linear plant model used in linear quadratic regulator

(LQR) design): x;;1 = fi(x,u) Nf’ +ER+f 0+ 5 ATf’ X+X f’ LA+ 2qu’Wu where @ =u—u’, and
3) a local second order Taylor series appr0x1mat10n of the one step cost, which is often known
analytically for human specified criteria (Ly, and L, correspond to Q and R of LQR design):
Li(x,u) ~ Lj+ L&+ Lia+ I8"LL &k +&"LE o+ Ja"Li

U Ll

Given a trajectory, one can integrate the value function and its first and second spatial derivatives
backwards in time to compute an improved value function and policy. We utilize the “Q function”
notation from reinforcement learning: Q(x,u) = L(x,u) + V(f(x,u)). The backward sweep takes
the following form (in discrete time):

O\ =Li+Vif O, =L, +Vif, 3)

Q=L +Vit + () Vit 0O, =L, +Vif, +(£) Vit Qim =L, +Vif, + (£)TV;x(i})
A =(0,)7'0L: K =(0,,) "0, (5)

Vil=0l-0K: Vi'=0 0K (6)

where subscripts indicate derivatives and superscripts indicate the trajectory index. After the back-
ward sweep, forward integration can be used to update the trajectory itself: u,, =u —Ad —
K/(x},,, —x'). We note that the cost of this approach grows at most cubically rather than expo-
nentially with respect to the dimensionality of the state.

In problems that have a goal state, we can generate a trajectory from each stored state all the way to
the goal. The cost of this trajectory is an upper bound on the true value of the state, and is used to
bound the estimated value for the old state.

Utilizing the local models: For the purpose of explaining our algorithm, let’s assume we already
have a set of sampled states, each of which has a local model of the value function and the policy.

How should we use these multiple local models? The simplest approach is to just use the predictions
of the nearest sampled state, which is what we currently do. We use a kd-tree to efficiently find
nearest neighbors, but there are many other approaches that will find nearby stored states efficiently.
In the future we will investigate using other methods to combine local model predictions from nearby
stored states: distance weighted averaging (kernel regression), linear locally weighted regression,
and quadratic locally weighted regression for value functions.

Creating new random states: For tasks with a goal state, we initialize the set of stored states by
storing the goal state itself. We have explored a number of distributions to select additional states
from: uniform within bounds on the states; Gaussian with the mean at the goal; sampling near
existing states; and sampling from an underlying low resolution regular grid. The uniform approach
is a useful default approach, which we use in the swingup examples, the Gaussian approach provides
a simple way to tune the distribution, sampling near existing states provides a way to efficiently
sample while growing the solved region in high dimensions, and sampling from an underlying low
resolution grid seems to perform well when only a small number of stored states are used (similar to
using low dispersion sequences [1, 14]). A key point of our approach is that we do not generate the
random states in advance but instead select them as the algorithm progresses. This allows us to apply
an acceptance criteria to candidate states, which we describe in the next paragraph. We have also
explored changing the distribution we generate candidate states from as the algorithm progresses,
for example using a mixture of Gaussians with the Gaussians centered on existing stored states.
Another reasonable hybrid approach would be to initially sample from a grid, and then bias more
general sampling to regions of higher value function approximation error.

Acceptance criteria for candidate states: We have several criteria to accept or reject states to be
permanently stored. In the future we will explore “forgetting” or removing stored states, but at this
point we apply all memory control techniques at the storage event. To focus the search and limit the
volume considered, a steadily increasing value limit is maintained (V};,,;;), which is increased slightly
after each use. The approximated value function is used to predict the value of the candidate state.
If the prediction is above Vj;,ir, the candidate state is rejected. Otherwise, a trajectory is created
from the candidate state using the current approximated policy, and then locally optimized. If the
value of that trajectory is above Vj;,,ir, the candidate state is rejected. If the value of the trajectory is
within 10% of the predicted value, the candidate state is rejected. Only “surprises” are stored. For
problems with a goal state, if the trajectory does not reach the goal the candidate state is rejected.
Other criteria such as an A* like criteria (cost-to-go(x) + cost-from-start(x) > threshold) can be
used to reject candidate states. All of the thresholds mentioned can be changed as the algorithm
progresses. For example, Vi, is gradually increased during the solution process, to increase the
volume considered by the algorithm. We currently use a 10% “surprise” threshold. In future work
we will explore starting with a larger threshold and decreasing this threshold with time, to further
reduce the number of samples accepted and stored while improving convergence. It is possible
to take the distance to the nearest sampled state into account in the acceptance criteria for new
samples. The common approach of accepting states beyond a distance threshold enforces a minimum
resolution, and leads to potentially severe curse of dimensionality effects. Rejecting states that are
too close to existing states will increase the error in representing the value function, but may be a
way for preventing too many samples near complex regions of the value functions that have little
practical effect. For example, we often do not need much accuracy in representing the value function
near policy discontinuities where the value function has discontinuities in its spatial derivative and
“creases”. In these areas the trajectories typically move away from the discontinuities, and the
details of the value function have little effect.

In the current implementation, after a candidate state is accepted, the state in the database whose
local model was used to make the prediction is re-optimized including information from the newly
added point, since the prediction was wrong and the new point’s policy may lead to a better value
for that state.

Creating a trajectory from a state: We create a trajectory from a candidate state or refine a trajec-
tory from a stored state in the same way. The first step is to use the current approximated policy until
the goal or a time limit is reached. In the current implementation this involves finding the stored
state nearest to the current state in the trajectory and using its locally linear policy to compute the
action on each time step. The second step is to locally optimize the trajectory. We use Differential
Dynamic Programming (DDP) in the current implementation [17, 18, 8, 16]. In the current imple-
mentation we do not save the trajectory but only the local models from its start. If the cost of the

N

Figure 3: Configurations from the simulated two link pendulum optimal swing up trajectory every fifth of a
second and the end of the trajectory.

trajectory is more than the currently stored value for the state, we reject the new value, as the values
all come from actual trajectories and are upper bounds for the true value. We always keep the lowest
upper bound.

Combining parallel greedy local optimizers to perform global optimization: As currently de-
scribed, the algorithm finds a locally optimal policy, but not necessarily a globally optimal policy.
For example, the stored states could be divided into two sets of nearest neighbors. One set could
have a suboptimal policy, but have no interaction with the other set of states that had a globally
optimal policy since no nearest neighbor relations joined the two sets. We expect the locally optimal
policies to be fairly good because we 1) gradually increase the solved volume and 2) use local op-
timizers. Given local optimization of actions, gradually increasing the solved volume will result in
a globally optimal policy if the boundary of this volume never touches a non adjacent section of it-
self. Figures 2 and 2 show the creases in the value function (discontinuities in the spatial derivative)
and corresponding discontinuities in the policy that typically result when the constant cost contour
touches a non adjacent section of itself as Vj;,,;; is increased.

In theory, the approach we have described will produce a globally optimal policy if it has infinite
resolution and all the stored states form a densely connected set in terms of nearest neighbor rela-
tions [8]. By enforcing consistency of the local value function models across all nearest neighbor
pairs, we can create a globally consistent value function estimate. Consistency means that any state’s
local model correctly predicts values of nearby states. If the value function estimate is consistent
everywhere, the Bellman equation is solved and we have a globally optimal policy. We can en-
force consistency of nearest neighbor value functions by 1) using the policy of one state of a pair
to reoptimize the trajectory of the other state of the pair and vice versa, and 2) adding more stored
states in between nearest neighbors that continue to disagree [8]. This approach is similar to using
the method of characteristics to solve partial differential equations and finding value functions for
games.

In practice, we cannot achieve infinite resolution. To increase the likelihood of finding a globally
optimal policy with a limited resolution of stored states, we need an analog to exploration and to
global minimization with respect to actions found in the Bellman equation. We approximate this
process by periodically reoptimizing each stored state using the policies of other stored states. As
more and more states are stored, and many alternative stored states are considered in optimizing any
given stored state, a wide range of actions are considered for each state. We run a reoptimization
phase of the algorithm after every N (typically 100) states have been stored. There are several ways
to design this reoptimization phase. Each state could use the policy of a nearest neighbor, or a
randomly chosen neighbor with the distribution being distance dependent, or just choosing another
state randomly with no consideration of distance (what we currently do). [8] describes how to follow
a policy of another stored state if its trajectory is stored, or can be recomputed as needed. In this
work we explored a different approach that does not require each stored state to save its trajectory
or recompute it. To “follow” the policy of another state, we follow the locally linear policy for that
state until the trajectory begins to go away from the state. At that point we switch to following the
globally approximated policy. Since we apply this reoptimization process periodically with different
randomly selected policies, over time we explore using a wide range of actions from each state.

e ¢ L L L |

Figure 4: Configurations from the simulated three link pendulum optimal trajectory every tenth of a second
and at the end of the trajectory.

4 Results

In addition to the one link swingup example presented in the introduction, we present results on
two link swingup (4 dimensional state) and three link swingup (6 dimensional state). A companion
paper using these techniques to explore how multiple balance strategies can be generated from one
optimization criterion is [19]. Further results, including some for a four link (8 dimensional state)
standing robot are presented.

One link pendulum swingup: For the one link swingup case, the random state approach found
a globally optimal trajectory (the same trajectory found by our grid based approaches [15]) after
adding only 63 random states. Figure 2:right shows the distribution of states and their trajectories
superimposed on a contour map of the value function for one link swingup.

Two link pendulum swingup: For the two link swingup case, the random state approach finds
what we believe is a globally optimal trajectory (the same trajectory found by our grid based ap-
proaches [15]) after storing an average of 12000 random states (Figure 3). In this case the state has
four dimensions (a position and velocity for each joint) and a two dimensional action (a torque at
each joint). The one step cost function was a weighted sum of the squared position errors and the
squared torques: L(x,u) = 0.1(6% +63)T + (12 4+ 13)T. 0.1 weights the position errors relative to
the torque penalty, T is the time step of the simulation (0.01s), and there were no costs associated
with joint velocities. The approximately 12000 sampled states should be compared to the millions
of states used in grid-based approaches. A 60x60x60x60 grid with almost 13 million states failed
to find a trajectory as good as this one, while a 100x100x100x100 grid with 100 million states did
find the same trajectory. In 13 runs with different random number generator seeds, the mean number
of states stored at convergence is 11430. All but two of the runs converged after storing less than
13000 states, and all runs converged after storing 27000 states.

Three link pendulum swingup: For the three link swingup case, the random state approach found
a good trajectory after storing less than 22000 random states (Figure 4). We have not yet solved
this problem a sufficient number of times to be convinced this is a global optimum, and we do not
have a solution based on a regular grid available for comparison. We were not able to solve this
problem using regular grid-based approaches due to limited state resolution: 22x22x22x22x38x44
= 391,676,032 states filled our largest memory. As in the previous examples, the one step cost
function was a weighted sum of the squared position errors and the squared torques: L(x,u) =

0.1(67+63+63)T+ (1] + 13 +13)T.

5 Conclusion

We have combined random sampling of states and local trajectory optimization to create a promis-
ing approach to practical dynamic programming for robot control problems. We are able to solve
problems we couldn’t solve before due to memory limitations. Future work will optimize aspects
and variants of this approach.

Acknowledgments

This material is based upon work supported in part by the DARPA Learning Locomotion Program
and the National Science Foundation under grants CNS-0224419, DGE-0333420, ECS-0325383,
and EEC-0540865.

References

[1] J. Rust. Using randomization to break the curse of dimensionality. Econometrica, 65(3):487—
516, 1997.

[2] M. Hauskrecht. Incremental methods for computing bounds in partially observable Markov
decision processes. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97), pages 734739, Providence, Rhode Island, 1997. AAAI Press / MIT Press.

[3] N.L. Zhang and W. Zhang. Speeding up the convergence of value iteration in partially observ-
able Markov decision processes. JAIR, 14:29-51, 2001.

[4] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDRPs. In International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[5] T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Uncertainty in
Artificial Intelligence, 2004.

[6] M.T.J. Spaan and Nikos V. A point-based POMDP algorithm for robot planning. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, pages 2399-2404,
New Orleans, Louisiana, April 2004.

[7] S. Thrun. Monte Carlo POMDPs. In S.A. Solla, TK. Leen, and K.-R. Miiller, editors, Advances
in Neural Information Processing 12, pages 1064—1070. MIT Press, 2000.

[8] C. G. Atkeson. Using local trajectory optimizers to speed up global optimization in dynamic
programming. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances in

Neural Information Processing Systems, volume 6, pages 663—-670. Morgan Kaufmann Pub-
lishers, Inc., 1994.

[9] F. L. Lewis and V. L. Syrmos. Optimal Control, 2nd Edition. Wiley-Interscience, 1995.

[10] C. Szepesvari. Efficient approximate planning in continuous space Markovian decision prob-
lems. AI Communications, 13(3):163-176, 2001.

[11] J. N. Tsitsiklis and Van B. Roy. Regression methods for pricing complex American-style
options. IEEE-NN, 12:694-703, July 2001.

[12] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results in systems
and control, 2000.

[13] R. Munos and A. W. Moore. Variable resolution discretization in optimal control. Machine
Learning Journal, 49:291-323, 2002.

[14] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[15] C. G. Atkeson. Randomly sampling actions in dynamic programming. In 2007 IEEE In-
ternational Symposium on Approximate Dynamic Programming and Reinforcement Learning
(ADPRL), 2007.

[16] C. G. Atkeson and J. Morimoto. Nonparametric representation of a policies and value func-
tions: A trajectory based approach. In Advances in Neural Information Processing Systems 15.
MIT Press, 2003.

[17] P. Dyer and S. R. McReynolds. The Computation and Theory of Optimal Control. Academic
Press, New York, NY, 1970.

[18] D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, New York,
NY, 1970.

[19] C. G. Atkeson and B. Stephens. Multiple balance strategies from one optimization criterion.
In Humanoids, 2007.

