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Abstract

We propose a Gaussian process (GP) framework for robust inference in which a
GP prior on the mixing weights of a two-component noise model augments the
standard process over latent function values. This approach is a generalization of
the mixture likelihood used in traditional robust GP regression, and a specializa-
tion of the GP mixture models suggested by Tresp [1] and Rasmussen and Ghahra-
mani [2]. The value of this restriction is in its tractable expectation propagation
updates, which allow for faster inference and model selection, and better conver-
gence than the standard mixture. An additional benefit over the latter method lies
in our ability to incorporate knowledge of the noise domain to influence predic-
tions, and to recover with the predictive distribution information about the outlier
distribution via the gating process. The model has asymptotic complexity equal
to that of conventional robust methods, but yields more confident predictions on
benchmark problems than classical heavy-tailed models and exhibits improved
stability for data with clustered corruptions, for which they fail altogether. We
show further how our approach can be used without adjustment for more smoothly
heteroscedastic data, and suggest how it could be extended to more general noise
models. We also address similarities with the work of Goldberg et al. [3].

1 Introduction

Regression data are often modelled as noisy observations of an underlying process. The simplest
assumption is that all noise is independent and identically distributed (i.i.d.) zero-mean Gaussian,
such that a typical set of samples appears as a cloud around the latent function. The Bayesian frame-
work of Gaussian processes [4] is well-suited to these conditions, for which all computations remain
tractable (see figure 1a). Furthermore, the Gaussian noise model enjoys the theoretical justification
of the central limit theorem, which states that the sum of sufficiently many i.i.d. random variables of
finite variance will be distributed normally. However, only rarely can perturbations affecting data in
the real world be argued to have originated in the addition of many i.i.d. sources. The random com-
ponent in the signal may be caused by human or measurement error, or it may be the manifestation
of systematic variation invisible to a simplified model. In any case, if ever there is the possibility of
encountering small quantities of highly implausible data, we requirerobustness, i.e. a model whose
predictions are not greatly affected by outliers.

Such demands render the standard GP inappropriate: the light tails of the Gaussian distribution
cannot explain large non-Gaussian deviations, which either skew the mean interpolant away from
the majority of the data, or force us to infer an unreasonably large (global) noise variance (see
figure 1b). Robust methods use a heavy-tailed likelihood to allow the interpolant effectively to
favour smoothness and ignore such erroneous data. Figure 1c shows how this can be achieved using
a two-component noise model

p(yn|fn) = (1 − ǫ)N
(

yn ; fn , σ2
R

)

+ ǫN
(

yn ; fn , σ2
O

)

, (1)
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Figure 1: Black dots show noisy samples from thesinc function. In panels (a) and (b), the be-
haviour of a GP with a Gaussian noise assumption is illustrated; the shaded region shows 95%
confidence intervals. The presence of a single outlier is highly influential in this model, but the
heavy-tailed likelihood (1) in panel (c) is more resilient. Unfortunately, even this model fails for
the cluster of outliers in panel (d). Here, grey lines show ten repeated runs of the EP inference
algorithm, while the black line and shaded region are their averaged mean and confidence intervals
respectively—grossly at odds with those of the latent generative model.

in which observationsyn are Gaussian corruptions offn, being drawn with probabilityǫ from a
large variance outlier distribution (σ2

O ≫ σ2
R). Inference in this model is tractable, but impractical

for all but the smallest problems due to the exponential explosion of terms in products of (1).

In this paper, we address the more fundamental GP assumption of i.i.d. noise. Our research is mo-
tivated by observing how the predictive distribution suffers for heavy-tailed models when outliers
appear in bursts: figure 1d replicates figure 1c, but introduces an additional three outliers. All param-
eters were taken from the optimal solution to (c), but even without the challenge of hyperparameter
optimization there is now considerable uncertainty in the posterior since the competing interpreta-
tions of the cluster as signal or noise have similar posterior mass. Viewed another way, the tails of
theeffectivelog likelihood of four clustered observations have approximately one-quarter the weight
of a single outlier, so the magnitude of the posterior peak associated with the robust solution is com-
parably reduced. One simple remedy is to make the tails of the likelihood heavier. However, since
the noise model is global, this has ramifications across the entire data space, potentially causing
underfitting elsewhere when real data are relegated to the tails. We can establish an optimal choice
for the parameters by gradient ascent on the marginal likelihood, but it is entirely possible that no
single setting will be universally satisfactory.

The model introduced in this paper, which we call thetwinned Gaussian process(TGP), generalizes
the noise model (1) by using a GP gating function to choose between the “real” and “outlier dis-
tributions”: in regions of confidence, the tails can be made very light, encouraging the interpolant
to hug the data points tightly; more dubious observations can be treated appropriately by broaden-
ing the noise distribution in their vicinity. Our model is also a specialization of the GP mixtures
proposed by Tresp [1] and Rasmussen and Ghahramani [2]; indeed, the latter automatically infers
the correct number of components to use. One may therefore wonder what can possibly be gained
by restricting ourselves to a comparatively simple architecture. The answer is in the computational
overhead required for the different approaches, since these more general models require inference
by Monte Carlo methods. We argue that the two-component mixture is often a sensible distribution
for modelling real data, with a natural interpretation and the heavy tails required for robustness;
its weaknesses are exposed primarily when the noise distribution is not homoscedastic. The TGP
largely solves this problem, and allows inference by an efficient expectation propagation (EP) [5]
procedure (rather than resorting to more heavy duty Monte Carlo methods). Hence, provided a two-
component mixture is likely to reflect adequately the noise on our data, the TGP will give similar
results to the generalized mixtures mentioned above, but at a fraction of the cost.

Goldberg et al. [3] suggest an approach to input-dependent noise in the spirit of the TGP, in which
the log variance on observations is itself modelled as a GP (the logarithm since noise variance is
a non-negative property). Inference is again analytically intractable, so Gibbs sampling is used
to generate noise vectors from the posterior distribution by alternately fitting the signal process
and fitting the noise process. A further stage of Gibbs sampling is required at each test point to
estimate the predictive variance, making testing rather slow. Model selection is even slower, and the
Metropolis-Hastings algorithm is suggested for updating hyperparameters.
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2 Twinned Gaussian processes

Given a domainX and covariance functionK(·, ·) ∈ X × X → R, a Gaussian process (GP) over
the space of real-valued functions ofX specifies the joint distribution at any finite setX ⊂ X :

p(f |X) = N (f ; 0 , Kf) ,

where thef = {fn}N
n=1 are (latent) values associated with eachxn ∈ X, andKf is theGram

matrix, the evaluation of the covariance function at all pairs(xi,xj). We apply Bayes’ rule to obtain
the posterior distribution over thef , given the observedX andy, which with the assumption of
i.i.d. Gaussian corrupted observations is also normally distributed. Predictions atX⋆ are made by
marginalizing overf in the (Gaussian) jointp(f , f⋆|X,y,X⋆). See [6] for a thorough introduction.

Robust GP regression is achieved by using aleptokurticlikelihood distribution, i.e. one whose tails
have more mass than the Gaussian. Common choices are the Laplace (or double exponential) distri-
bution, Student’s t distribution, and the mixture model (1). In product with the prior, a heavy-tailed
likelihood over an outlying observation does not exert the strong pull on the posterior witnessed
with a light-tailed noise model. Kuss [7] describes how inference can be performed for all these
likelihoods, and establishes that in many cases their performance is broadly comparable. Since it
bears closest resemblance to the twinned GP, we are particularly interested in the mixture; however,
in section 4, we include results for the Laplace model: it is the heaviest-tailed log concave distri-
bution, which guarantees a unimodal posterior and allows more reliable EP convergence. In any
case, all such methods make aglobalassumption about the noise distribution, and it is where this is
inappropriate that our model is most beneficial.

The graphical model for the TGP is shown in figure 2b. We augment the standard process overf
with another GP over a set of variablesu; this acts as a gating function, probabilistically dividing
the domain between the real and outlier components of the noise model

p(yn|fn) = σ(un)N
(

yn ; fn , σ2
R

)

+ σ(−un)N
(

yn ; fn , σ2
O

)

, (2)

where σ(un)
.
=

∫ un

−∞

N (z ; 0 , 1) dz.

In the TGP likelihood, we therefore mix two forms of Gaussian corruption, one strongly peaked at
the observation, the other a broader distribution which provides the heavy tails, in proportion deter-
mined byu(x). This makes intuitive sense; crucially to us, it retains the advantage of tractability
with respect to EP updates. The two priors may have quite different covariance structure, reflect-
ing our different beliefs about correlations in the signal and in the noise domain. In addition, we
accommodate prior beliefs about the prevalence of outliers with a non-zero mean process onu,

p(u|X) = N (u ; mu , Ku) p(f |X) = N (f ; 0 , Kf ) .

Our model can be understood as lying between two extremes: observe that we recover the heavy-
tailed (mixture of Gaussians) GP by forcing absolute correlation inu and adjusting the mean of
theu-process tomu = σ−1(1 − e); conversely, if we remove all correlations inu, we return to a
standard mixture model where independently we must decide to which component an input belongs.

3 Inference

We begin with a very brief account of EP; for more details, see [5, 8]. Suppose we have an intractable
distribution overf whose unnormalized form factorizes into a product of terms, such as a dense
Gaussian priort0(f ,u) and a series of independent likelihoods{tn(yn|fn, un)}N

n=1. EP constructs
the approximate posterior as a product of scaledsite functions̃tn. For computational tractability,
these sites are usually chosen from an exponential family with natural parametersθ, since in this
case their product retains the same functional form as its components. The Gaussian(µ,Σ) has a
natural parameterization(b,Π) = (Σ−1µ,− 1

2Σ
−1). If the prior is of this form, its site function is

exact:

p(f ,u|y) =
1

Z
t0(f ,u)

N
∏

n=1

tn(yn|fn, un) ≈ q(f ; θ) = t0(f ,u)
N
∏

n=1

znt̃n(fn, un; θn), (3)
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Figure 2: In panel (a) we show a graphical model for the Gaussian process. The data ordinates arex,
observationsy, and the GP is over the latentf . The bold black lines indicate a fully-connected set.
Panel (b) shows a graphical model for thetwinned Gaussian process(TGP), in which an auxiliary
set of hidden variablesu describes the noisiness of the data.

whereZ is the marginal likelihood andzn are the scale parameters. Ideally, we would chooseθ
at the global minimum of some divergence measured(p‖q), but the necessary optimization is usu-
ally intractable. EP is an iterative procedure that finds a minimizer ofKL

(

p(f ,u|y)‖q(f ,u; θ)
)

on a pointwise basis: at each iteration, we select a new siten, and from the product of thecav-
ity distribution formed by the current marginal with the omission of that site, and the true likeli-
hood termtn, we obtain the so-calledtilted distributionqn(fn, un; θ\n). A simpler optimization
minθn

KL
(

qn(fn, un; θ\n)‖q(fn, un; θ)
)

then fits only the parametersθn: this is equivalent tomo-
ment matchingbetween the two distributions, with scalezn chosen to match the zeroth-order mo-
ments. After each site update, the moments at the remaining sites are liable to change, and several
iterations may be required before convergence.

The priors overu and f are independent, but we expect correlations in the posterior after condi-
tioning on observations. To understand this, consider a single observation(xn, yn); in principle, it
admits two explanations corresponding to its classification as either “outlier” or as “real” data: in
general terms, eitherun > 0 andfn ≈ yn, or un < 0 andfn respects the global structure of the
signal. A diagram to assist the visualization of the behaviour of the posterior is provided in figure 3.

Now, recall that the prior overu andf is

p

(

[

u
f

]

∣

∣

∣

∣

∣

X

)

= N

([

u
f

]

;

[

mu

0

]

,

[

Ku 0
0 Kf

])

and the likelihood factorizes into a product of terms (2); our site approximationst̃n are therefore
Gaussian in(fn, un). Of importance for EP are the moments of the tilted distribution which we
seek to match. These are most easily obtained by differentiation of the zeroth momentsZR andZO

of each component. We find

ZR =

∫∫

f,u

σ(u)N
(

y ; f , σ2
R

)

N

([

u
f

]

; µ , Σ

)

dudf =

∫ ∞

0

N

([

z
y

]

; µ ,

[

1 0
0 σ2

R

]

+ Σ

)

dz;

writing the inner Gaussian asN

([

zn

yn

]

;

[

µu

µf

]

,

[

A C
C BR

])

, ZR = N (y ; µf , BR)σ(q),

where q =
µu + C

BR

(y − µf )
√

A − C2

BR

.

The integral for the outlier component is similar;ZO = N (y ; µf , BO)σ(−q). With partial deriva-

tives ∂ log Z
∂µ

and ∂2 log Z
∂µµT we are equipped for EP; algorithmic details appear in Seeger’s note [8]. For

efficiency, we make rank-two updates of the full approximate covariance on(f ,u) during the EP
loop, and refresh the posterior at the end of each cycle to avoid loss of precision.

4



f

lo
g
p

prior
likelihood
posterior
EP

-5 0 5 10

f

u

-5 0 5 10

-10

-5

0

5

10

f

u

-5 0 5 10

-10

-5

0

5

10

replacements

f

lo
g
p

prior
likelihood
posterior
EP

-5 0 5 10

f

u

-5 0 5 10

-10

-5

0

5

10

f

u

-5 0 5 10

-10

-5

0

5

10

f

lo
g
p

prior
likelihood
posterior
EP

-5 0 5 10

f

u

-5 0 5 10

-10

-5

0

5

10

f

u

-5 0 5 10

-10

-5

0

5

10

f

lo
g
p

prior
likelihood
posterior
EP

-5 0 5 10

f

u

-5 0 5 10

-10

-5

0

5

10

f

u

-5 0 5 10

-10

-5

0

5

10

Figure 3: Using the twinned Gaussian process provides a natural resilience against clustered noisy
data. The left-hand column illustrates the behaviour of a fixed heavy-tailed likelihood for one,
two, four and five repeated observations atf = 5. (Outliers in real data are not necessarily so
tightly packed, but the symmetry of this approximation allows us to treat them as a single unit: by
“posterior”, for example, we mean the a posteriori belief inall the observations’ (identical) latent
f .) The context is provided by the prior, which gives 95% confidence to data aroundf = 0±2. The
top-left box illustrates how the influence of isolated outliers is mitigated by the standard mixture.
However, a repeated observation (box two on the left) causes the EP solution to collapse onto the
spike at the data (the log scale is deceptive: the second peak contributes only about 8% of the
posterior mass). The twinned GP better preserves the marginal distribution off by maintaining a
joint distribution over bothf andu: in the second and third columns respectively are contours of
the true log joint (we use a broad zero-mean prior onu) and that inferred by EP, together with the
marginal posterior overf . Only with a fifth observation—final box—is the context off essentially
overruled by the TGP approximation. The thick bar in the central column marks the cross-section
corresponding to the unnormalized posterior from column one.
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3.1 Predictions

If the outlier component describes nuisance noise that should be eliminated, we require at test in-
putsx⋆ only the marginal distributionp(f⋆|x⋆, X,y), obtained by marginalizing overu in the full
(approximate) posterior

N

([

u
f

]

;

[

µ̂u

µ̂f

]

,

[

Σ̂uu Σ̂uf

Σ̂fu Σ̂ff

])

:

p(f⋆|x⋆, X,y) =

∫

p(f⋆|x⋆, f)p(f |X,y)df

≈ N
(

f⋆ ; kT
f⋆K

−1
f µ̂f , kf

⋆⋆ − kT
f⋆K

−1
f kf⋆ + kT

f⋆K
−1
f Σ̂ffK

−1
f kf⋆

)

.

The noise process may itself be of interest, in which case we need to marginalize over bothu⋆ and
f⋆ in

p(y⋆|x⋆, X,y) =

∫∫

p

(

y⋆

∣

∣

∣

∣

∣

x⋆,

[

u
f

]

)

p

(

[

u
f

]

∣

∣

∣

∣

∣

X,y

)

dudf

≈

∫∫∫∫

p

(

y⋆

∣

∣

∣

∣

∣

x⋆,

[

u⋆

f⋆

]

)

p

(

[

u⋆

f⋆

]

∣

∣

∣

∣

∣

[

u
f

]

)

N

([

u
f

]

; µ̂ , Σ̂

)

du⋆df⋆dudf .

This distribution is no longer Gaussian, but its moments may be recovered easily by the same method
used to obtain moments of the tilted distribution.

EP provides in addition to the approximate moments of the posterior distribution an estimate of the
marginal likelihood and its derivatives with respect to kernel hyperparameters. Again, we refer the
interested reader to the algorithm presented in [8], adding here only that our implementation uses
log noise values on(σ2

R, σ2
O) to allow for their unconstrained optimization.

3.2 Complexity

The EP loop is dominated by the rank-two updates of the covariance. Each such update is
O
(

(2N)2
)

, making everyN iterationsO(4N3). The posterior refresh isO(8N3) since it re-
quires the inverse of a2N × 2N positive semi-definite matrix, most efficiently achieved through
Cholesky factorization (this Cholesky factor can be retained for use in calculating the approximate
log marginal likelihood). The total number of loops required for convergence of EP is typically in-
dependent ofN , and can be upper bounded by a small constant, say 10, making the entire inference
processO(8N3) = O(N3). Thus, our algorithm has the same limiting time complexity as i.i.d. ro-
bust regression by EP, which admittedly masks the larger coefficient that appears in approximating
bothu andf simultaneously. Additionally, the body of the EP loop is slightly slower, since the pre-
cision matrix in a standard GP can be obtained with a single division, whereas our model requires
the inversion of a2 × 2 matrix.

4 Experiments

We identify two general noise characteristics for which our model may be suitable. The first is
when the outlying observations can appear in clusters: we saw in figure 1d how these occurrences
affect the standard mixture model. In fact the problem is quite severe, since the multimodality of the
posterior impedes the convergence of EP, while the possibility of conflicting gradient information at
the optima hampers procedures for evidence maximization. In figure 4 we illustrate how the TGP
succeeds where the mixture and Laplace models fail; note how the mean process onu falls sharply
in the contaminated regions. This is a stable solution, and hyperparameters can be fit reliably.

A data set which exhibits the superior predictive modelling of the TGP in a domain where robust
methods can also expect to perform well is provided by Kuss [7] in a variation on a set of Friedman
[9]. The samples are drawn from a function of ten-dimensional vectorsx which depend only on the
first five components:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.
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Figure 4: The corruptions are i.i.d. aroundx = −10, and highly correlated nearx = 0.

We generated ten sets of 90 training examples and 10000 test examples by samplingx uniformly
in [0, 1]10, and adding to the training data noiseN (0, 1). In our first experiment, we replicated the
procedure of [7]: ten training points were added at random with outputs sampled fromN (15, 9) (a
value likely to lie in the same range asf ). The results appear as Friedman (1) in figure 5. Observe
that the r.m.s. error for the robust methods is similar, but the TGP is able to fit the variance far more
accurately. In a second experiment, the training set was augmented with two Gaussian clusters each
of five noisy observations. The cluster centres were drawn uniformly in[0, 1]10, with variance fixed
at 10−3. Output values were then drawn fromN (0, 1) for all ten points, to give highly correlated
values distant from the underlying function (Friedman (2)). Now the TGP excels where the other
methods offer no improvement on the standard GP; it also yields very confident predictions (cf.
Friedman (1)), because once the outliers have been accounted for there are fewer corrupted regions;
furthermore, estimates of where the data are corrupted can be recovered by considering the process
onu. In both experiments, the training data were renormalized to zero mean and unit variance, and
throughout, we used the anisotropic squared exponential for thef process (implementing so-called
relevance determination), and an isotropic version foru. The approximate marginal likelihood was
maximized on three to five randomly initialized models; we chose for testing the most favoured.

The second domain of application is when the noise on the data is believed a priori to be a function of
the input (i.e. heteroscedastic). The twinned GP can simulate this changing variance by modulating
theu process, allocating varying weight to the two components. By way of example, the behaviour
for the one-dimensional motorcycle set [10] is shown in fig. 5c. However, since the input-dependent
noise is not modelled directly, there are two notable dangers associated with this approach: first,
the predictive variance saturates when all weight has been apportioned to one or other component;
second, the “outlier” component can dominate the variance estimates of the mixture. This is partic-
ularly problematic when variance on the data ranges over several orders of magnitude, such that the
“outlier” width must be comparably broader than that of the “real” component. In such cases, only
with extreme values ofu can the smallest errors be predicted, but in consequence the process tends
to sweep precipitately through the region of sensitivity where variance predictions can be made ac-
curately. To circumvent these problems we might employ the warped GP [11] to rescale the process
onu in a supervised manner, but we do not explore these ideas further here.

test error neg. log probability
GP LapMixTGPGP LapMix TGP

0

0.5

0.2

0.4

(a) Friedman (1)
test error neg. log probability

GP LapMix TGPGP LapMixTGP

-1

0

0.2

0.4

0.6

(b) Friedman (2) (c) Motorcycle

Figure 5: Results for the Friedman data, and the predictions of the TGP on the motorcycle set.
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5 Extensions

With prior knowledge of the nature of corruptions affecting the signal, we can seek to model the
noise distribution more accurately, for example by introducing a compound likelihood for the outlier
componentpO(yn|fn) =

∑

j αjN
(

yn ; µj(fn) , σ2
j

)

,
∑

j αj = 1. This constrains the relative
weight of outlier corruptions to be constant across the entire domain. A richer alternative is provided
by extending the singleu-process on noise to a seriesu(1),u(2), . . . ,u(ν) of noise processes, and
broadening the likelihood function appropriately. For example, withν = 2, we may write

p(yn|fn, u(1)
n , u(2)

n ) = σ(u(1)
n )N

(

yn ; fn , σ2
R

)

+

σ(−u(1)
n )σ(u(2)

n )N
(

yn ; fn , σ2
O1

)

+

σ(−u(1)
n )σ(−u(2)

n )N
(

yn ; f0 , σ2
O2

)

. (4)

In the former case, the preceding analysis applies with small changes: each component of the outlier
distribution contributes moments independently. The second model introduces significant compu-
tational difficulty: firstly, we must maintain a posterior distribution overf and allν us, yielding
space requirementsO(N(ν + 1)) and time complexityO(N3(ν + 1)3). More importantly, the req-
uisite moments needed in the EP loop are now intractable, although an inner EP loop can be used
to approximate them, since the product ofσs behaves in essence like the standard model for GP
classification. We omit details, and defer experiments with such a model to future work.

6 Conclusions

We have presented a method for robust GP regression that improves upon classical approaches by
allowing the noise variance to vary in the input space. We found improved convergence on problems
which upset the standard mixture model, and have shown how predictive certainty can be improved
by adopting the TGP even for problems which do not. The model also allows an arbitrary process
onu, such that specialized prior knowledge could be used to drive the inference overf to respecting
regions which may otherwise be considered erroneous. A generalization of our ideas appears as
the mixture of GPs [1], and the infinite mixture [2], but both involve a slow inference procedure.
When faster solutions are required for robust inference, and a two-component mixture is an adequate
model for the task, we believe the TGP is a very attractive option.
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