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Abstract

The ill-posed nature of the MEG/EEG source localization problem requires the
incorporation of prior assumptions when choosing an appropriate solution out of
an infinite set of candidates. Bayesian methods are useful in this capacity because
they allow these assumptions to be explicitly quantified. Recently, a number of
empirical Bayesian approaches have been proposed that attempt a form of model
selection by using the data to guide the search for an appropriate prior. While
seemingly quite different in many respects, we apply a unifying framework based
on automatic relevance determination (ARD) that elucidates various attributes of
these methods and suggests directions for improvement. We also derive theo-
retical properties of this methodology related to convergence, local minima, and
localization bias and explore connections with established algorithms.

1 Introduction

Magnetoencephalography (MEG) and electroencephalography (EEG) use an array of sensors to take
EM field measurements from on or near the scalp surface with excellent temporal resolution. In both
cases, the observed field is generated by the same synchronous, compact current sources located
within the brain. Because the mapping from source activity configuration to sensor measurement
is many to one, accurately determining the spatial locations of these unknown sources is extremely
difficult. The relevant localization problem can be posed as follows: The measured EM signal is
B ∈ <db×n, wheredb equals the number of sensors andn is the number of time points at which
measurements are made. The unknown sourcesS ∈ <ds×n are the (discretized) current values at
ds candidate locations distributed throughout the cortical surface. These candidate locations are
obtained by segmenting a structural MR scan of a human subject and tesselating the gray matter
surface with a set of vertices.B andS are related by the generative model

B = LS + E , (1)

whereL is the so-called lead-field matrix, thei-th column of which represents the signal vector
that would be observed at the scalp given a unit current source at thei-th vertex with a fixed ori-
entation (flexible orientations can be incorporated by including three columns per location, one for
each directional component). Multiple methods based on the physical properties of the brain and
Maxwell’s equations are available for this computation. Finally,E is a noise term with columns
drawn independently fromN (0,Σε).

To obtain reasonable spatial resolution, the number of candidate source locations will necessarily be
much larger than the number of sensors (ds � db). The salient inverse problem then becomes the
ill-posed estimation of these activity or source regions, which are reflected by the nonzero rows of
the source estimate matrix̂S. Because the inverse model is underdetermined, all efforts at source
reconstruction are heavily dependent on prior assumptions, which in a Bayesian framework are em-
bedded in the distributionp(S). Such a prior is often considered to be fixed and known, as in the
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case of minimum̀2-norm approaches, minimum current estimation (MCE) [6, 18], FOCUSS [2, 5],
and sLORETA [10]. Alternatively, a number of empirical Bayesian approaches have been proposed
that attempt a form of model selection by using the data to guide the search for an appropriate prior.
Examples include variational Bayesian methods [14, 15], hierarchial covariance component models
[4, 8, 11], and automatic relevance determination (ARD) [7, 9, 12, 13, 17]. While seemingly quite
different in some respects, we present a generalized framework that encompasses many of these
methods and points to connections between algorithms. We also analyze several theoretical proper-
ties of this framework related to computational/convergence issues, local minima, and localization
bias. Overall, we envision that by providing a unifying perspective on these approaches, neuroelec-
tromagnetic imaging practitioners will be better able to assess the relative strengths with respect to
a particular application. This process also points to several promising directions for future research.

2 A Generalized Bayesian Framework for Source Localization
In this section, we present a general-purpose Bayesian framework for source localization. In doing
so, we focus on the common ground between many of the methods discussed above. While de-
rived using different assumptions and methodology, they can be related via the notion of automatic
relevance determination [9] and evidence maximization [7].

To begin we involve the noise model from (1), which fully defines the assumed likelihoodp(B|S).
While the unknown noise covariance can also be parameterized and estimated from the data, for
simplicity we assume thatΣε is known and fixed. Next we adopt the following source prior forS:

p (S; Σs) = N (0,Σs) , Σs =
dγ∑
i=1

γiCi, (2)

where the distribution is understood to apply independently to each column ofS. Hereγ =
[γ1, . . . , γdγ

]T is a vector ofdγ nonnegative hyperparameters that control the relative contribution
of each covariance basis matrixCi, all of which we assume are fixed and known. The unknown
hyperparameters can be estimated from the data by first integrating out the unknown sourcesS
giving

p(B; Σb) =
∫
p (B|S) p (S; Σs) dS = N (0,Σb), (3)

whereΣb = Σε + LΣsL
T . A hyperpriorp(γ) can also be included if desired. This expression

is then maximized with respect to the unknown hyperparameters, a process referred to as type-II
maximum likelihood or evidence maximization [7, 9] or restricted maximum likelihood [4]. Thus
the optimization problem shifts from finding the maximum a posteriori sources given a fixed prior
to finding the optimal hyperparameters of a parameterized prior. Once these estimates are obtained
(computational issues will be discussed in Section 2.1), a tractable posterior distributionp(S|B; Σ̂s)
exists in closed form, wherêΣs =

∑
i γ̂iCi. To the extent that the ‘learned’ priorp(S; Σ̂s) is

realistic, this posterior quantifies regions of significant current density and point estimates for the
unknown sources can be obtained by evaluating the posterior mean

Ŝ , E
[
S|B; Σ̂s

]
= Σ̂sL

T
(
Σε + LΣ̂sL

T
)−1

B. (4)

The specific choice of theCi’s is crucial and can be used to reflect any assumptions about the pos-
sible distribution of current sources. It is this selection, rather than the adoption of a covariance
component model per se, that primarily differentiates the many different empirical Bayesian ap-
proaches and points to novel algorithms for future study. The optimization strategy adopted for
computingγ̂, as well as the particular choice of hyperpriorp(γ), if any, can also be distinguishing
factors.

In the simplest case, use of the single componentΣs = γ1C1 = γ1I leads to a regularized minimum-
`2-norm solution. More interesting covariance component terms have been used to effect spatial
smoothness, depth bias compensation, and candidate locations of likely activity [8, 11]. With regard
to the latter, it has been suggested that prior information about a source location can be codified
by including aCi term with all zeros except a patch of 1’s along the diagonal signifying a location
of probable source activity, perhaps based on fMRI data [11]. An associated hyperparameterγi

is then estimated to determine the appropriate contribution of this component to the overall prior
covariance. The limitation of this approach is that we generally do not know, a priori, the regions



where activity is occurring with both high spatial and temporal resolution. Therefore, we cannot
reliably known how to choose an appropriate location-prior term in many situations.

The empirical Bayesian solution to this dilemma, which amounts to a form of model selection, is to
try out many different (or even all possible) combinations of location priors, and determine which
one has the highest Bayesian evidence, i.e., maximizesp(B; Σb) [7]. For example, if we assume the
underlying currents are formed from a collection of dipolar point sources located at each vertex of the
lead-field grid, then we may chooseΣs =

∑ds

i=1 γieie
T
i , where eachei is a standard indexing vector

of zeros with a ‘1’ for thei-th element (and soCi = eie
T
i encodes a prior preference for a single

dipolar source at locationi).1 This specification for the prior involves the counterintuitive addition
of an unknown hyperparameter for every candidate source location which, on casual analysis may
seem prone to severe overfitting (in contrast to [11], which uses only one or two fixed location
priors). However, the process of marginalization, or the integrating out of the unknown sources
S, provides an extremely powerful regularizing effect, driving most of the unknownγi to zero
during the evidence maximization stage (more on this in Section 3). This ameliorates the overfitting
problem and effectively reduces the space of possible active source locations by choosing a small
relevant subset of location priors that optimizes the Bayesian evidence (hence ARD). With this
‘learned’ prior in place, a once ill-posed inverse problem is no longer untenable, with the posterior
mean providing a good estimate of source activity. Such a procedure has been empirically successful
in the context of neural networks [9], kernel machines [17], and multiple dipole fitting for MEG [12],
a significant benefit to the latter being that the optimal number of dipoles need not be known a priori.

In contrast, to model sources with some spatial extent, we can chooseCi = ψiψ
T
i , where each

ψi represents, for example, ands × 1 geodesic neural basis vector that specifies ana priori weight
locationandactivity extent [13]. In this scenario, the number of hyperparameters satisfiesdγ = vds,
wherev is the number of scales we wish to examine in a multi-resolution decomposition, and can be
quite large (dγ ≈ 106). As mentioned above, the ARD framework tests many priors corresponding to
many hypotheses or beliefs regarding the locations and scales of the nonzero current activity within
the brain, ultimately choosing the one with the highest evidence. The net result of this formulation
is a source prior composed of a mixture of Gaussian kernels of varying scales. The number of
mixture components, or the number of nonzeroγi’s, is learned from the data and is naturally forced
to be small (sparse). In general, the methodology is quite flexible and other prior specifications
can be included as well, such as temporal and spectral constraints. But the essential ingredient of
ARD, that marginalization and subsequent evidence maximization leads to a pruning of unsupported
hypotheses, remains unchanged.

We turn now to empirical Bayesian procedures that incorporate variational methods. In [15], a
plausible hierarchical prior is adopted that, unfortunately, leads to intractable integrations when
computing the desired source posterior. This motivates the inclusion of a variational approximation
that models the true posterior as a factored distribution over parameters at two levels of the prior
hierarchy. While seemingly quite different, drawing on results from [1], we can show that the
resulting cost function is exactly equivalent to standard ARD assumingΣs is parameterized as

Σs =
ds∑

i=1

γieiei +
ds∑

j=1

γ(ds+j)ψjψ
T
j , (5)

and sodγ = 2ds. When fMRI data is available, it is incorporated into a particular inverse Gamma
hyperprior onγ, as is also commonly done with ARD methods [1]. Optimization is then performed
using simple EM update rules.

In summary then, the general methods of [4, 8, 11] and [12, 13, 17] as well as the variational method
of [15] are all identical with respect to their ARD-based cost functions; they differ only in which
covariance components (and possibly hyperpriors) are used and in how optimization is performed
as will be discussed below. In contrast, the variational model from [14] introduces an additional
hierarchy to the ARD framework to explicitly model temporal correlations between sources which
may be spatially separated.2 Here it is assumed thatS can be decomposed with respect todz pre-

1Here we assume dipoles with orientations constrained to be orthogonal to the cortical surface; however,
the method is easily extended to handle unconstrained dipoles.

2Although standard ARD does not explicitly model correlated sources that are spatially separated, it still
works well in this situation (see Section 3) and can reflect such correlations via the inferred posterior mean.



sourcesvia
S = WZ, p(W ; Σw) = N (0,Σw), p(Z) = N (0, I), (6)

whereZ ∈ <dz×n represents the pre-source matrix andΣw is analogous toΣs. As stated in [14],
direct application of ARD would involve integration overW andZ to find the hyperparametersγ
that maximizep(B; Σb). While such a procedure is not analytically tractable, it remains insightful
to explore the characteristics of this method were we able to perform the necessary computation.
This allows us to relate the full model of [14] to standard ARD.

Interestingly, it can be shown that the first and second order statistics of the full prior (6) and the
standard ARD prior (2) are equivalent (up to a constant factor), although higher-order moments
will be different. However, as the number of pre-sourcesdz becomes large, multivariate central-
limit-theorem arguments can be used to explicitly show that the distribution ofS converges to an
identical Gaussian prior as ARD. So exact evaluation of the full model, which is espoused as the ideal
objective were it feasible, approaches regular ARD when the number of pre-sources grows large. In
practice, because the full model is intractable, a variational approximation is adopted similar to
that proposed in [15]. In fact, if we assume the appropriate hyperprior onγ, then this correlated
source method is essentially the same as the procedure from [15] but with an additional level in the
approximate posterior factorization for handling the decomposition (6). This produces approximate
posteriors onW andZ but the result cannot be integrated to form the posterior onS. However, the
posterior mean ofW , Ŵ , is used as an estimate of the source correlation matrix (usingŴŴT ) to
substantially improve beamforming results that were errantly based on uncorrelated source models.
Note however that this procedure implicitly uses the somewhat peculiar criteria of combining the
posterior mean ofW with the prior onZ to form an estimate of the distribution ofS.

2.1 Computational Issues

The primary objective of ARD is to maximize the evidencep(B; Σb) with respect toγ or equiva-
lently, to minimize

L(γ) , − log p(B; Σb) ≡ n log |Σb|+ trace
[
BT Σ−1

b B
]
. (7)

In [4], a restricted maximum likelihood (ReML) approach is proposed for this optimization, which
utilizes what amounts to EM-based updates. This method typically requires a nonlinear search for
each M-step and does not guarantee that the estimated covariance is positive definite. While shown
to be successful in estimating a handful of hyperparameters in [8, 11], this could potentially be
problematic when very large numbers of hyperparameters are present. For example, in several toy
problems (withdγ large) we have found that a fraction of the hyperparameters obtained can be
negative-valued, inconsistent with our initial premise.

As such, we present three alternative optimization procedures that extend the methods from [7,
12, 15, 17] to the arbitrary covariance model discussed above and guarantee thatγi ≥ 0 for all i.
Because of the flexibility this allows in constructingΣs, and thereforeΣb, some additional notation
is required to proceed. A new decomposition ofΣb is defined as

Σb = Σε + L

 dγ∑
i=1

γiCi

LT = Σε +
dγ∑
i=1

γiL̃iL̃
T
i , (8)

whereL̃iL̃
T
i , LCiL

T with ri , rank(L̃iL̃
T
i ) ≤ db. Also, using commutative properties of the

trace operator,L(γ) only depends on the dataB through thedb×db sample correlation matrixBBT .
Therefore, to reduce the computational burden, we replaceB with a matrixB̃ ∈ <db×rank(B) such
thatB̃B̃T = BBT . This removes any per-iteration dependency onn, which can potentially be large,
without altering that actual cost function.

By treating the unknown sources as hidden data, an update can be derived for the(k+1)-th iteration

γ
(k+1)
i =

1
nri

∥∥∥∥γ(k)
i L̃T

i

(
Σ(k)

b

)−1

B̃

∥∥∥∥2

F
+

1
ri

trace
[
γ

(k)
i I − γ

(k)
i L̃T

i

(
Σ(k)

b

)−1

L̃iγ
(k)
i

]
, (9)

which reduces to the algorithm from [15] given the appropriate simplifying assumptions on the
form of Σs and some additional algebraic manipulations. It is also equivalent to ReML with a



different effective computation for the M-step. By casting the update rules in this way and noting
that off-diagonal elements of the second term need not be computed, the per-iteration cost is at

mostO
(
d2

b

∑dγ

i=1 ri

)
≤ O

(
d3

bdγ

)
. This expense can be significantly reduced still further in cases

where different pseudo lead-field components, e.g., someL̃i andL̃j , contain one or more columns
in common. This situation occurs if we desire to use the geodesic basis functions with flexible
orientation constraints, as opposed to the fixed orientations assumed above. In general, the linear
dependence ondγ is one of the attractive aspects of this method, effectively allowing for extremely
large numbers of hyperparameters and covariance components.

The problem then with (9) is not the per-iteration complexity but the convergence rate, which we
have observed to be prohibitively slow in practical situations with high-resolution lead-field matrices
and large numbers of hyperparameters. The only reported localization results using this type of EM
algorithm are from [15], where a relatively low resolution lead-field matrix is used in conjunction
with a simplifying heuristic that constrains some of the hyperparameter values. However, to avoid
these types of constraints, which can potentially degrade the quality of source estimates, a faster
update rule is needed. To this end, we modified the procedure of [7], which involves taking the
gradient ofL(γ) with respect toγ, rearranging terms, and forming the fixed-point update

γ
(k+1)
i =

γ
(k)
i

n

∥∥∥∥L̃T
i

(
Σ(k)

b

)−1

B̃

∥∥∥∥2

F

(
trace

[
L̃T

i

(
Σ(k)

b

)−1

L̃i

])−1

. (10)

The complexity of each iteration is the same as before, only now the convergence rate can be orders
of magnitude faster. For example, givendb = 275 sensors,n = 1000 observation vectors, and using
a pseudo lead-field with 120,000 unique columns and an equal number of hyperparameters, requires
approximately 5-10 mins. runtime using Matlab code on a PC to completely converge. The EM
update does not converge after 24 hours. Example localization results using (10) demonstrate the
ability to recover very complex source configurations with variable spatial extent [13].

Unlike the EM method, one criticism of (10) is that there currently exists no proof that it represents a
descent function, although we have never observed it to increase (7) in practice. While we can show
that (10) is equivalent to iteratively solving a particular min-max problem in search of a saddle point,
provable convergence is still suspect. However, a similar update rule can be derived that is both
significantly faster than EMand is proven to produceγ vectors such thatL

(
γ(k+1)

)
≤ L

(
γ(k)

)
for

every iterationk. Using a dual-form representation ofL(γ) that leads to a more tractable auxiliary
cost function, this update is given by

γ
(k+1)
i =

γ
(k)
i√
n

∥∥∥∥L̃T
i

(
Σ(k)

b

)−1

B̃

∥∥∥∥
F

(
trace

[
L̃T

i

(
Σ(k)

b

)−1

L̃i

])−1/2

. (11)

Details of the derivation can be found in [20].

Finally, the correlated source method from [14] can be incorporated into the general ARD framework
as well using update rules related to the above; however, because all off-diagonal terms are required
by this method, the iterations now scale as(

∑
i ri)

2 in the general case. This quadratic dependence
can be prohibitive in applications with large numbers of covariance components.

2.2 Relationship with Other Bayesian Methods

As a point of comparison, we now describe how ARD can be related to alternative Bayesian-inspired
approaches such as the sLORETA paradigm [10] and the iterative FOCUSS source localization
algorithm [5]. The connection is most transparent when we substitute the prior covarianceΣs =∑ds

i=1 γieie
T
i = diag[γ] into (10), giving the modified update

γ
(k+1)
i =

∥∥∥∥γ(k)
i `Ti

(
Σε + LΓ(k)LT

)−1

B

∥∥∥∥2

2

(
nR

(k)
ii

)−1

, R(k) , Γ(k)LT
(
Σε + LΓ(k)LT

)−1

L,

(12)
whereΓ , diag[γ], `i is the i-th column ofL, andR(k) is the effective resolution matrix given
the hyperparameters at the current iteration. Thej-th column ofR (called a point-spread function)
equals the source estimate obtained using (4) when the true source is a unit dipole at locationj [16].

Continuing, if we assume that initialization of ARD occurs withγ(0) = 1 (as is customary), then the
hyperparameters produced after asingleiteration of ARD are equivalent to computing the sLORETA



estimate for standardized current density power [10] (this assumes fixed orientation constraints). In
this context, the inclusion ofR as a normalization factor helps to compensate for depth bias, which
is the propensity for deep current sources within the brain to be underrepresented at the scalp surface
[10, 12]. So ARD can be interpreted as a recursive refinement of what amounts to the non-adaptive,
linear sLORETA estimate.

As a further avenue for comparison, if we assume thatR = I for all iterations, then the update (12) is
nearly the same as the FOCUSS iterations modified to simultaneously handle multiple observation
vectors [2]. The only difference is the factor ofn in the denominator in the case of ARD, but
this can be offset by an appropriate rescaling of the FOCUSSλ trade-off parameter (analogous to
Σε). Therefore, ARD can be viewed in some sense as taking the recursive FOCUSS update rules and
including the sLORETA normalization that, among other things, allows for depth bias compensation.

Thus far, we have focused on similarities in update rules between the ARD formulation (restricted
to the case whereΣs = Γ) and sLORETA and FOCUSS. We now switch gears and examine how the
general ARD cost function relates to that of FOCUSS and MCE and suggests a useful generalization
of both approaches. Recall that the evidence maximization procedure upon which ARD is based
involves integrating out the unknownsourcesbefore optimizing the hyperparametersγ. However, if
somep(γ) is assumed forγ, then we could just as easily do the opposite: namely, we can integrate
out thehyperparametersand then maximizeS directly, thus solving the MAP estimation problem

max
S

∫
p (B|S) p (S; Σs) p(γ)dγ ≡ min

{S:S=
P

i Ai
eSi}
‖B − LS‖2

Σ−1
ε

+
dγ∑
i=1

g
(
‖S̃i‖F

)
, (13)

where eachAi is derived from thei-th covariance component such thatCi = AiA
T
i , andg(·) is a

function dependent onp(γ). For example, whenp(γ) is a noninformative Jeffreys prior, theng(x) =
log x and (13) becomes a generalized form of the FOCUSS cost function (and reduces to the exact
FOCUSS cost whenAi = ei for all i). Likewise, when an exponential prior chosen, theng(x) = x
and we obtain a generalized version of MCE. In both cases, multiple simultaneous constraints (e.g.,
flexible dipole orientations, spatial smoothing, etc.) can be naturally handled and, if desired, the
noise covarianceΣε can be seamlessly estimated as well (see [3] for a special case of the latter in the
context of kernel regression). This addresses many of the concerns raised in [8] pertaining to existing
MAP methods. Additionally, as with ARD, source components that are not sufficiently important
in representing the observed data are pruned; however, the undesirable discontinuities in standard
FOCUSS or MCE source estimates across time, which previously have required smoothing using
heuristic measures [6], do not occur when using (13). This is because sparsity is only encouraged
betweencomponents due to the concavity ofg(·), but notwithin components where the Frobenius
norm operator promotes smooth solutions [2]. All of these issues, as well as efficient ARD-like
update rules for optimizing (13), are discussed in [20].

3 General Properties of ARD Methods
ARD methods maintain several attributes that make them desirable candidates for source localiza-
tion. For example, unlike most MAP procedures, the ARD cost function is often invariant to lead-
field column normalizations, which only affect the implicit initialization that is used or potentially
the selection of theCi’s. In contrast, MCE produces a different globally minimizing solution for
every normalization scheme. As such, ARD is considerably more robust to the particular heuristic
used for this task and can readily handle deep current sources.

Previously, we have claimed that the ARD process naturally forces excessive/irrelevant hyperpa-
rameters to converge to zero, thereby reducing model complexity. While this observation has been
verified empirically by ourselves and others in various application settings, there has been relatively
little corroborating theoretical evidence, largely because of the difficulty in analyzing the potentially
multimodal, non-convex ARD cost function. As such, we provide the following result:

Result 1. Every local minimum of the generalized ARD cost function (7) is achieved at a solution
with at mostrank(B)db ≤ d2

b nonzero hyperparameters.

The proof follows from a result in [19] and the fact that the ARD cost only depends on therank(B)
matrixBBT . Result 1 comprises a worst-case bound that is only tight in very nuanced situations; in
practice, for any reasonable value ofΣε, the number of nonzero hyperparameters is typically much
smaller thandb. The bound holds for allΣε, includingΣε = 0, indicating that some measure of



hyperparameter pruning, and therefore covariance component pruning, is built into the ARD frame-
work irrespective of the noise-based regularization. Moreover, the number of nonzero hyperparam-
eters decreases monotonically to zero asΣε is increased. And so there is always someΣε = Σ′

ε
sufficiently large such that all hyperparameters converge to exactly zero. Therefore, we can be rea-
sonable confident that the pruning mechanism of ARD is not merely an empirical phenomena. Nor
is it dependent on a particular sparse hyperprior, since the ARD cost from (7) implicitly assumes a
flat (uniform) hyperprior.

The number of observation vectorsn also plays an important role in shaping ARD solutions. In-
creasingn has two primary benefits: (i) it facilitates convergence to the global minimum (as opposed
to getting stuck in a suboptimal extrema) and (ii), it improves the quality of this minimum by mit-
igating the effects of noise [20]. With perfectly correlated (spatially separated) sources, primarily
only the later benefit is in effect. For example, with low noise and perfectly correlated sources, the
estimation problem reduces to an equivalent problem withn = 1, so the local minima profile of the
cost function does not improve with increasingn. Of course standard ARD can still be very effec-
tive in this scenario [13]. In contrast, geometric arguments can be made to show that uncorrelated
sources with largen offer the best opportunity for local minima avoidance. However, when strong
correlations are present as well as high noise levels, the method of [14] (which explicitly attempts
to model correlations) could offer a worthwhile alternative, albeit at a high computational cost.

Further theoretical support for ARD is possible in the context of localization bias assuming simple
source configurations. For example, substantial import has been devoted to quantifying localization
bias when estimating a single dipolar source. Recently it has been shown, both empirically [10]
and theoretically [16], that sLORETA has zero location bias under this condition at high SNR.
Viewed then as an iterative enhancement of sLORETA as described in Section 2.2, the question
naturally arises whether ARD methods retain this desirable property. In fact, it can be shown that
this is indeed the case in two general situations. We assume that the lead-field matrixL represents a
sufficiently high sampling of the source space such that any active dipole aligns with some lead-field
column. Unbiasedness can also be shown in the continuous case for both sLORETA and ARD, but
the discrete scenario is more straightforward and of course more relevant to any practical task.

Result 2. Assume thatΣs includes (among others)ds covariance components of the formCi =
eie

T
i . Then in the absence of noise (high SNR), ARD has provably zero localization bias when

estimating a single dipolar source, regardless of the value ofn.

If we are willing to tolerate some additional assumptions, then this result can be significantly ex-
panded. For example, multiple dipolar sources can be localized with zero bias if they are perfectly
uncorrelated (orthogonal) across time and assuming some mild technical conditions [20]. This re-
sult also formalizes the notion, mentioned above, that ARD performs best with uncorrelated sources.
Turning to the more realistic scenario where noise is present gives the following:

Result 3. Let Σs be constructed as above and assume the noise covariance matrixΣε is known up
to a scale factor. Then given a single dipolar source, in the limit asn becomes large the ARD cost
function is unimodal, and a source estimate with zero localization bias achieves the global minimum.

For most reasonable lead-fields and covariance components, this global minimum will be unique,
and so the unbiased solution will be found as in the noiseless case. As for proofs, all the theoreti-
cal results pertaining to localization bias in this section follow from local minima properties of ML
covariance component estimates. While details have been deferred to [20], the basic idea is that
if the outerproductBBT can be expressed as some non-negative linear combination of the avail-
able covariance components, then the ARD cost function is unimodal andΣb = n−1BBT at any
minimizing solution. ThisΣb in turn produces unbiased source estimates in a variety of situations.

While theoretical results of this kind are admittedly limited, other iterative Bayesian schemes in
fact fail to exhibit similar performance. For example, all of the MAP-based focal algorithms we are
aware of, including FOCUSS and MCE methods, provably maintain a localization bias in the general
setting, although in particular cases they may not exhibit one. (Also, because of the additional
complexity involved, it is still unclear whether the correlated source method of [14] satisfies a similar
result.) When we move to more complex source configurations with possible correlations and noise,
theoretical results are not available; however, empirical tests provide a useful means of comparison.
For example, given a275 × 40, 000 lead-field matrix constructed from an MR scan and assuming
fixed orientation constraints and a spherical head model, ARD usingΣs = diag[γ] andn = 1



(equivalent to having perfectly correlated sources) consistently maintains zero empirical localization
bias when estimating up to 15-20 dipoles, while sLORETA starts to show a bias with only a few.

4 Discussion
The efficacy of modern empirical Bayesian techniques and variational approximations make them
attractive candidates for source localization. However, it is not always transparent how these meth-
ods relate nor which should be expected to perform best in various situations. By developing a
general framework around the notion of ARD, deriving several theoretical properties, and showing
connections between algorithms, we hope to bring an insightful perspective to these techniques.
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