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Abstract

Discriminative learning methods for classification perform well when training and
test data are drawn from the same distribution. In many situations, though, we
have labeled training data forsmurcedomain, and we wish to learn a classifier
which performs well on gargetdomain with a different distribution. Under what
conditions can we adapt a classifier trained on the source domain for use in the
target domain? Intuitively, a good feature representation is a crucial factor in the
success of domain adaptation. We formalize this intuition theoretically with a
generalization bound for domain adaption. Our theory illustrates the tradeoffs in-
herent in designing a representation for domain adaptation and gives a new justifi-
cation for a recently proposed model. It also points toward a promising new model
for domain adaptation: one which explicitly minimizes the difference between the
source and target domains, while at the same time maximizing the margin of the
training set.

1 Introduction

We are all familiar with the situation in which someone learns to perform a task on training examples
drawn from some domain (tteourcedomain), but then needs to perform the same task on a related
domain (thaarget domain). In this situation, we expect the task performance in the target domain to
depend on both the performance in the source domain and the similarity between the two domains.

This situation arises often in machine learning. For example, we might want to adapt for a new
user (the target domain) a spam filter trained on the email of a group of previous users (the source
domain), under the assumption that users generally agree on what is spam and what is not. Then, the
challenge is that the distributions of emails for the first set of users and for the new user are different.
Intuitively, one might expect that the closer the two distributions are, the better the filter trained on
the source domain will do on the target domain.

Many other instances of this situation arise in natural language processing. In general, labeled data
for tasks like part-of-speech tagging, parsing, or information extraction are drawn from a limited set

of document types and genres in a given language because of availability, cost, and project goals.
However, applications for the trained systems often involve somewhat different document types
and genres. Nevertheless, part-of-speech, syntactic structure, or entity mention decisions are to a
large extent stable across different types and genres since they depend on general properties of the
language under consideration.

Discriminative learning methods for classification are based on the assumption that training and test
data are drawn from the same distribution. This assumption underlies both theoretical estimates of
generalization error and the many experimental evaluations of learning methods. However, the as-
sumption does not hold for domain adaptation [5, 7, 13, 6]. For the situations we outlined above, the
challenge is the difference in instance distribution between the source and target domains. We will
approach this challenge by investigating how a common representation between the two domains



can make the two domains appear to have similar distributiemsbling effective domain adapta-

tion. We formalize this intuition with a bound on thergetgeneralization error of a classifier trained

from labeled data in theourcedomain. The bound is stated in terms of a representation function,
and it shows that a representation function should be designed to minimize domain divergence, as
well as classifier error.

While many authors have analyzed adaptation from multiple sets of labeled training data [3, 5, 7,

13], our theory applies to the setting in which the target domain has no labeled training data, but

plentiful unlabeled data exists for both target and source domains. As we suggested above, this
setting realistically captures the problems widely encountered in real-world applications of machine

learning. Indeed recent empirical work in natural language processing [11, 6] has been targeted at
exactly this setting.

We show experimentally that the heuristic choices made by the recently proposed structural corre-
spondence learning algorithm [6] do lead to lower values of the relevant quantities in our theoretical
analysis, providing insight as to why this algorithm achieves its empirical success. Our theory also
points to an interesting new algorithm for domain adaptation: one which directly minimizes a trade-
off between source-target similarity and source training error.

The remainder of this paper is structured as follows: In the next section we formally define domain
adaptation. Section 3 gives our main theoretical results. We discuss how to compute the bound
in section 4. Section 5 shows how the bound behaves for the structural correspondence learning
representation [6] on natural language data. We discuss our findings, including a new algorithm for
domain adaptation based on our theory, in section 6 and conclude in section 7.

2 Background and Problem Setup

Let X be an instance set. In the case of [6], this could be all English words, together with the
possible contexts in which they occur. LEtbe a feature space {Rs a typical choice) and0, 1}
be the label set for binary classification

A learning problem is specified by two parameters: a distribuflaver X and a (stochastic) target
function f : X — [0,1]. The value off(x) corresponds to the probability that the labelxofs
1. A representation functiof® is a function which maps instances to featuRs X — Z. A
representatiofik induces a distribution ove® and a (stochastic) target function frafnto [0, 1] as
follows:

Prs(B] ¥ Prp[R7Y(B)]

flz) = Eplfx)IR(x) =7
forany A C Z such thatR ~!(B) is D-measurable. In words, the probability of an evéntinder
D is the probability of the inverse image 8funderR according taD, and the probability that the
label of z is 1 according tof is the mean of probabilities of instancesthat z represents. Note
that f(z) may be a stochastic function evenfifx) is not. This is because the functiéhcan map
two instances with differenf-labels to the same feature representation. In summary, our learning
setting is defined by fixed but unknowih and f, and our choice of representation functiRBnand
hypothesis clas# C {g: Z — {0,1}} of deterministic hypotheses to be used to approximate the
function f.

2.1 Domain Adaptation

We now formalize the problem afomain adaptation. Alomainis a distributionD on the instance

setX. Note that this isnot the domain of a function. To avoid confusion, we will always mean a
specific distribution over the instance set when we say domain. Unlike in inductive transfer, where
the tasks we wish to perform may be related but different, in domain adaptation we perfaanmtée

task in multiple domains. This is quite common in natural language processing, where we might be
performing the same syntactic analysis task, such as tagging or parsing, but on domains with very
different vocabularies [6, 11].

The same type of analysis hold for multiclass classification, but for simplicty we analyze the binary case.



We assume two domains, saurce domain and aarget domain. We denote b¥s the source
distribution of instances anBs the induced distribution over the feature spateWe use parallel
notation, Dy, Dy, for the target domain.f : X — [0,1] is the labeling rule, common to both
domains, and is the induced image of underR.

A predictor is a functionh, from the feature spac¢; to [0, 1]. We denote the probability, according
the distributionDg, that a predictoh, disagrees withf by

es(h) = E, 5, [Ey~f<z> v # h(z)ﬂ

s |[(2) = ()| .
Similarly, er(h) denotes the expected error/ofvith respect tdDy.

3 Generalization Bounds for Domain Adaptation

We now proceed to develop a bound on the target domain generalization performance of a classifier
trained in the source domain. As we alluded to in section 1, the bound consists of two terms. The first
term bounds the performance of the classifier onstercedomain. The second term is a measure

of the divergence between the induced source marg@gahnd the induced target margiri@l-. A

natural measure of divergence for distributions istheor variational distance. This is defined as

dp,(D,D') =2 sup |Prp [B] — Prp [B]
BenB

whereB is the set of measureable subsets ufdemdD’. Unfortunately the variational distance
between real-valued distributions cannot be computed from finite samples [2, 9] and therefore is not
useful to us when investigating representations for domain adaptation on real-world data.

A key part of our theory is the observation that in many realistic domain adaptation scenarios, we
do not need such a powerful measure as variational distance. Instead we can restrict our notion of
domain distance to be measured only with respect to function in our hypothesis class.

3.1 TheA-distance and labeling function complexity

We make use of a special measure of distance between probability distributiopsdibance, as
introduced in [9]. Given a domai’ and a collectiond of subsets oft, let D, D’ be probability
distributions overY, such that every set i is measurable with respect to both distributions. the
A-distance between such distributions is defined as

da(D,D") =2 sup |Prp [A] — Prp/ [A]|
AeA

In order to use thed-distance, we need to limit the complexity of the true functjoin terms of
our hypothesis clask. We say that a functiorf : Z — [0, 1] is A-close to a function clask with
respect to distribution®g andDy- if
}ig{ [es(h) +er(h)] < A.
A function f is \-close to{ when there is a single hypothegise H which performs well orboth
domains. This embodies our domain adaptation assumption, and we will assume will assume that

our induced labeling functioffi is A-close to our hypothesis clagsfor a small.

We briefly note that in standard learning theory, it is possible to achieve bounds with no explicit as-
sumption on labeling function complexity. H has bounded capacity (e.qg., a finite VC-dimension),
then uniform convergence theory tells us that whengvusmot \-close toH, large training samples
have poor empirical error for evefye H. This isnotthe case for domain adaptation. If the training
data is generated by sonig; and we wish to use sonté as a family of predictors for labels in the
target domainy’, then one can construct a function which agrees with sbhree with respect

to Dg and yet is far fromf{ with respect tdDr. Nonetheless we believe that such examples do
not occur for realistic domain adaptation problems when the hypothesisilsssufficiently rich,

since for most domain adaptation problems of interest the labeling function is 'similarly simple’ for
both the source and target domains.



3.2 Bound on the target domain error

We require one last piece of notation before we state and prove the main theorems of this work: the
correspondence between functions and characteristic subsets. For a binary-valued fiagtioa
let Z, C Z be the subset whose characteristic function is

Z,={z¢€Z:9(z) =1} .

In a slight abuse of notation, for a binary function clagsve will write d(-,-) to indicate the
A-distance on the class of subsets whose characteristic functions are functidn®Niow we can
state our main theoretical result.

Theorem 1 Let'R be a fixed representation function frofhto Z and’H be a hypothesis space of
VC-dimensiond. If a random labeled sample of size is generated by applying R toRg-i.i.d.
sample labeled according tf then with probability at least — ¢, for everyh € H:

4 2% 4 o
er(h) < és(h) + \/m (dlog % +log 5) + dy(Ds, Dr) + A

wheree is the base of the natural logarithm.

Proof: Leth* = argmin, ¢y (er(h) + es(h)), and letAr and g be the errors of* with respect
to Dy andDg respectively. Notice that = Ay + Ag.

er(h) A+ Prp, [ZaAZ]
Ar + Prp, [ZhAZp+] + |Prpg [ZnAZL+] — Pro,, [ZnAZp+]
A1 + Prpg [24AZy+] 4 dy(Ds, Dr)

At + As + es(h) + dwn(Ds, Dr)

A+ eg(h) + dn(Ds, Dr)

The theorem now follows by a standard application Vapnik-Chervonenkis theory [14] to bound the
true eg(h) by its empirical estimatés(h). Namely, if S is anm-size .i.i.d. sample, then with
probability exceeding — 6,

4 2em 4
< € — - _
Gs(h) GS(h) + \/ ) (d log + 10g 5)

m The bound depends on the quantity(Dg, Dr). We chose thed-distance, however, precisely

because we can measure this from finite samples from the distrb@igasd D [9]. Combining
1 with theorem 3.2 from [9], we can state a computable bound for the error on the target domain.

VAN VAN VANRR VAN VAN

Theorem 2 Let'R be a fixed representation function frofhto Z and’H be a hypothesis space of
VC-dimensioni.

If a random labeled sample of size is generated by applying to a Dg - i.i.d. sample labeled
according tof, andi/s, U are unlabeled samples of siz€ each, drawn fronDg and D respec-
tively, then with probability at least — 6 (over the choice of the samples), for evérg H:

dlog(2m’) + log(%)

!

R 4 2em 4 ~

Let us briefly examine the bound from theorem 2, with an eye toward feature representations,
Under the assumption of subsection 3.1, we assume\tisasmall for reasonabl®. Thus the two
main terms of interest are the first and fourth terms, since the represerRativectly affects them.
The first term is the empirical training error. The fourth term is the sampllistance between
domains for hypothesis clagg. Looking at the two terms, we see that a good represent&im
one which achieves low values for both training error and domdadistance simultaneously.



4 Computing the A-distance for Signed Linear Classifiers

In this section we discuss practical considerations in computingithéstance on real data. Ben-
David et al. [9] show that thel-distance can be approximated arbitrarily well with increasing sample
size. Recalling the relationship between sets and their characteristic functions, it should be clear that
computing theA-distance is closely related to learning a classifier. In fact they are identical. The
set A, € H which maximizes thé+{-distance betwee®s and Dy has a characteristic function

h. Thenh is the classifier which achieves minimum error on the binary classification problem of
discriminating between points generated by the two distributions.

To see this, suppose we have two sampleandl/; , each of sizen’ from Dg andD respectively.
Define the error of a classifiéron the task of discriminating between points sampled from different
distributions as

2m’
1
err(h) = = Z ’h(zi) — L, i
i=1

wherel, ;. is the indicator function for points lying in the sample. In this case, it is straight-
forward to show that

)

- B . ,
daUs,Ur) =2 (1 2}{;1€1rﬁerr(h )) .

Unfortunately it is a known NP-hard problem even to approximate the error of the optimal hyper-
plane classifier for arbitrary distributions [4]. We choose to approximate the optimal hyperplane
classifier by minimizing a convex upper bound on the error, as is standard in classification. It is
important to note that this do@st provide us with a valid upper bound on the target error, but as we
will see it nonetheless provides us with useful insights about representations for domain adaptation.
In the subsequent experiments section, we train a linear classifier to discriminate between points
sampled from different domains to illustrate a proxy for thelistance. We minimize a modified
Huber loss using stochastic gradient descent, described more completely in [15].

5 Natural Language Experiments

In this section we use our theory to analyze different representations for the task of adapting a part of
speech tagger from the financial to biomedical domains [6]. The experiments illustrate the utility of
the bound and all of them have the same flavor. First, we choose a represeRtaliben we train

a classifier usingR and measure the different terms of the bound. As we shall see, represenations
which minimize both relevant terms of the bound also have small empirical error.

Part of speech (PoS) tagging is the task of labeling a word in context with its grammatical function.
For instance, in the previous sentence we would the tag for “speedifigsilar common noun,

the tag for “labeling” isgerund, and so on. PoS tagging is a common preprocessing step in many
pipelined natural language processing systems and is described in more detail in [6]. Blitzer et al.
empirically investigate methods for adpating a part of speech tagger from financial news (the Wall
Street Journal, henceforth also WSJ) to biomedical abstracts (MEDLINE) [6]. We have obtained
their data, and we will use it throughout this section. As in their investigation, we treat the financial
data as our source, for which we have labeled training data and the biomedical abstracts as our target,
for which we have no labeled training data.

The representations we consider in this section are all linear projections of the original feature space
into R%. For PoS tagging, the original feature space consists of high-dimensional, sparse binary
vectors [6]. In all of our experiments we choogdo be 200. Now at train time we apply the
projection to the binary feature vector representation of each instance and learn a linear classifier in
thed-dimensional projected space. At test time we apply the projection to the binary feature vector
representation and classify in tHedlimensional projected space.

5.1 Random Projections

If our original feature space is of dimensidh our random projection matrix is a mattix € R4x?".
The entries ofP are drawn i.i.d. from\ (0, 1). The Johnson-Lindenstrauss lemma [8] guarantees



(a) Plot of SCL representation for financial (b) Plot of SCL representation for nouns (di-
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Figure 1: 2D plots of SCL representations for @@ .A-distance andb) empirical risk parts of
theorem 2

that random projections approximate well distances in the original high dimensional space, as long
asd is sufficiently large. Arriaga and Vempala [1] show that one can achieve good prediction with
random projections as long as the margin is sufficiently large.

5.2 Structural Correspondence Learning

Blitzer et al. [6] describe a heuristic method for domain adaptation that they call structural corre-
spondence learning (henceforth also SCL). SCL uses unlabeled data from both domains to induce
correspondences among features in the two domains. Its first step is to identify a small set of domain-
independent “pivot” features which occur frequently in the unlabeled data of both domains. Other
features are then represented using their relative co-occurrence counts with these pivot features. Fi-
nally they use a low-rank approximation to the co-occurence count matrix as a projection Fhatrix

The intuition is that by capturing these important correlations, features from the source and target
domains which behave similarly for PoS tagging will be represented similarly in the projected space.

5.3 Results

We use as ousourcedata set 100 sentences (about 2500 words) of PoS-tagged Wall Street Journal
text. Thetargetdomain test set is the same set as in [6]. We use one million words (500 thousand
from each domain) of unlabeled data to estimate4hdistance between the financial and biomedi-

cal domains.

The results in this section are intended to illustrate the different parts of theorem 2 and how they can
affect the target domain generalization error. We give two types of results. The first are pictorial and
appear in figures 1(a), 1(b) and 2(a). These are intended to illustrate eithérdistance (figures

1(a) and 2(a)) or the empirical error (figure 1(b)) for different representations. The second type
are empirical and appear in 2(b). In this case we use the Huber loss as a proxy from the empirical
training error.

Figure 1(a) shows one hundred random instances projected onto the space spanned by the best two
discriminating projections from the SCL projection matrix for part of the financial and biomedical
dataset. Instances from the WSJ are depicted as filled red squares, whereas those from MEDLINE
are depicted as empty blue circles. An approximating linear discrimnator is also shown. Note,
however, that the discriminator performs poorly, and recall that if the best discriminator performs
poorly the A-distance is low. On the other hand, figure 1(b) shows the best two discriminating
components for the task of discriminating between nouns and verbs. Note that in this case, a good
discriminating divider is easy to find, even in such a low-dimensional space. Thus these pictures
lead us to believe that SCL finds a representation which results both in small empirical classification
error and smalld-distance. In this case theorem 2 predicts good performance.



(a) Plot of random projections repre- (b) Comparison of bound terms vs.target domain error
sentation for financial (squares) vsfor different choices of representatidReprentations
biomedical (circles) are linear projections of the original feature spéade-

ber lossis thelabeledtraining loss after training, and
the A-distance is approximated as described in the
previous subsectiorrror refers to tagging error for
the full tagset on the target domain.

Representation | Huber loss| .A-distance|| Error
Identity | 0.003 1.796 0.253
Random Proj| 0.254 0.223 0.561
SCL | 0.07 0.211 0.216

Figure 2:(a) 2D plot of random projection representation ghjiresults summary on large data

Figure 2(a) shows one hundred random instances projected onto the best two discriminating pro-
jections for WSJ vs. MEDLINE from a random matrix of 200 projections. This also seems to be
difficult to separate. The random projections don't reveal any useful structure for learning, either,
though. Not shown is the corresponding noun vs. verb plot for random projections. It looks identical
to 2(a). Thus theorem 2 predicts that using two random projections as a representation will perform
poorly, since it minimizes only thel-distance and not the empirical error.

Figure 2(b) gives results on a large training and test set showing how the value of the bound can
affect results. The identity representation achieves very low Huber loss (corresponding to empirical
error). The original feature set consists of 3 million binary-valued features, though, and it is quite
easy to separate the two domains using these features. The approXrdatance is near the
maximum possible value.

The random projections method achieves ldwndistance but high Huber loss, and the classifier
which uses this representation achieves error rates much lower than the a classifier which uses the
identity representation. Finally, the structural correspondence learning representation achieves low
Huber loss and lowd-distance, and the error rate is the lowest of the three representations.

6 Discussion and Future Work

Our theory demonstrates an important tradeoff inherent in designing good representations for do-
main adaptation. A good representation enables achieving low error rate on the source domain while
also minimizing the4-distance between the induced marginal distributions of the two domains. The
previous section demonstrates empirically that the heuristic choices of the SCL algorithm [6] do
achieve low values for each of these terms.

Our theory is closely related to theory by Sugiyama and Mueller on covariate shift in regression
models [12]. Like this work, they consider the case where the prediction functions are identical,
but the input data (covariates) have different distributions. Unlike their work, though, we bound the
target domain error using a finite source domain labeled sample and finite source and target domain
unlabeled samples.

Our experiments illustrate the utility of our bound on target domain error, but they do not explore
the accuracy of our approximaté-distance. This is an important area of exploration for future
work. Finally our theory points toward an interesting new direction for domain adapation. Rather
than heuristically choosing a representation, as previous research has done [6], we can try to learn
a representation which directly minimizes a combination of the terms in theorem 2. If we learn
mappings from some parametric family (linear projections, for example), we can give a bound on
the error in terms of the complexity of this family. This may do better than the current heuristics,
and we are also investigating theory and algorithms for this.



7 Conclusions

We presented an analysis of representations for domain adaptation. It is reasonable to think that a
good representation is the key to effective domain adaptation, and our theory backs up that intuition.
Theorem 2 gives an upper bound on the generalization of a classifier traineshorcadomain and

applied in aargetdomain. The bound depends on the representation and explicitly demonstrates the
tradeoff between low empirical source domain error and a small difference between distributions.

Under the assumption that the labeling functfois close to our hypothesis claks we can compute

the bound from finite samples. The relevant distributional divergence term can be writtens the
distance of Kiferet al [9]. Computing theA-distance is equivalent to finding the minimum-error
classifier. For hyperplane classifiersi, this is an NP-hard problem, but we give experimental
evidence that minimizing a convex upper bound on the error, as in normal classification, can give a
reasonable approximation to thedistance.

Our experiments indicate that the heuristic structural correspondence learning method [6] does in
fact simultaneously achieve lowl-distance as well as a low margin-based loss. This provides a
justification for the heuristic choices of SCL “pivots”. Finally we note that our theory points to
an interesting new algorithm for domain adaptation. Instead of making heuristic choices, we are
investigating algorithms which directly minimize a combination of thelistance and the empirical
training margin.
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