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Abstract
Autonomous helicopter flight is widely regarded to be a highly challenging control
problem. This paper presents the first successful autonomous completion on a
real RC helicopter of the following four aerobatic maneuvers: forward flip and
sideways roll at low speed, tail-in funnel, and nose-in funnel. Our experimental
results significantly extend the state of the art in autonomous helicopter flight.
We used the following approach: First we had a pilot fly the helicopter to help
us find a helicopter dynamics model and a reward (cost) function. Then we used
a reinforcement learning (optimal control) algorithm to find a controller that is
optimized for the resulting model and reward function. More specifically, we used
differential dynamic programming (DDP), an extension of the linear quadratic
regulator (LQR).

1 Introduction
Autonomous helicopter flight represents a challenging control problem with high-dimensional,
asymmetric, noisy, nonlinear, non-minimum phase dynamics. Helicopters are widely regarded to
be significantly harder to control than fixed-wing aircraft. (See, e.g., [14, 20].) At the same time,
helicopters provide unique capabilities, such as in-place hover and low-speed flight, important for
many applications. The control of autonomous helicopters thus provides a challenging and impor-
tant testbed for learning and control algorithms.

In the “upright flight regime” there has recently been considerable progress in autonomous helicopter
flight. For example, Bagnell and Schneider [6] achieved sustained autonomous hover. Both LaCivita
et al. [13] and Ng et al. [17] achieved sustained autonomous hover and accurate flight in regimes
where the helicopter’s orientation is fairly close to upright. Roberts et al. [18] and Saripalli et al. [19]
achieved vision based autonomous hover and landing. In contrast, autonomous flight achievements
in other flight regimes have been very limited. Gavrilets et al. [9] achieved a split-S, a stall turn and
a roll in forward flight. Ng et al. [16] achieved sustained autonomous inverted hover.

The results presented in this paper significantly expand the limited set of successfully completed
aerobatic maneuvers. In particular, we present the first successful autonomous completion of the
following four maneuvers: forward flip and axial roll at low speed, tail-in funnel, and nose-in funnel.
Not only are we first to autonomously complete such a single flip and roll, our controllers are also
able to continuously repeat the flips and rolls without any pauses in between. Thus the controller
has to provide continuous feedbackduring the maneuvers, and cannot, for example, use a period of
hovering to correct errors of the first flip before performing the next flip. The number of flips and
rolls and the duration of the funnel trajectories were chosen to be sufficiently large to demonstrate
that the helicopter could continue the maneuvers indefinitely (assuming unlimited fuel and battery
endurance). The completed maneuvers are significantly more challenging than previously completed
maneuvers.

In the (forward)flip, the helicopter rotates 360 degrees forward around its lateral axis (the axis
going from the right to the left of the helicopter). To prevent altitude loss during the maneuver, the
helicopter pushes itself back up by using the (inverted) main rotor thrust halfway through the flip.
In the (right) axialroll the helicopter rotates 360 degrees around its longitudinal axis (the axis going
from the back to the front of the helicopter). Similarly to the flip, the helicopter prevents altitude



loss by pushing itself back up by using the (inverted) main rotor thrust halfway through the roll. In
thetail-in funnel, the helicopter repeatedly flies a circle sideways with the tail pointing to the center
of the circle. For the trajectory to be a funnel maneuver, the helicopter speed and the circle radius
are chosen such that the helicopter must pitch up steeply to stay in the circle. Thenose-in funnel
is similar to the tail-in funnel, the difference being that the nose points to the center of the circle
throughout the maneuver.

The remainder of this paper is organized as follows: Section 2 explains how we learn a model from
flight data. The section considers both the problem of data collection, for which we use an appren-
ticeship learning approach, as well as the problem of estimating the model from data. Section 3
explains our control design. We explain differential dynamic programming as applied to our heli-
copter. We discuss our apprenticeship learning approach to choosing the reward function, as well
as other design decisions and lessons learned. Section 4 describes our helicopter platform and our
experimental results. Section 5 concludes the paper. Movies of our autonomous helicopter flights
are available at the following webpage:

http://www.cs.stanford.edu/˜pabbeel/heli-nips2006.

2 Learning a Helicopter Model from Flight Data
2.1 Data Collection
TheE3-family of algorithms [12] and its extensions [11, 7, 10] are the state of the art RL algorithms
for autonomous data collection. They proceed by generating “exploration” policies, which try to
visit inaccurately modeled parts of the state space. Unfortunately, such exploration policies do not
even try to fly the helicopter well, and thus would invariably lead to crashes. Thus, instead, we use
the apprenticeship learning algorithm proposed in [3], which proceeds as follows:

1. Collect data from a human pilot flying the desired maneuvers with the helicopter. Learn a
model from the data.

2. Find a controller that works in simulation based on the current model.
3. Test the controller on the helicopter. If it works, we are done. Otherwise, use the data from

the test flight to learn a new (improved) model and go back to Step 2.

This procedure has similarities with model-based RL and with the common approach in control to
first perform system identification and then find a controller using the resulting model. However,
the key insight from [3] is that this procedure is guaranteed to converge to expert performance in a
polynomial number of iterations. In practice we have needed at most three iterations. Importantly,
unlike theE3 family of algorithms, this procedure never uses explicit exploration policies. We only
have to test controllers that try to fly as well as possible (according to the current simulator).

2.2 Model Learning
The helicopter states comprises its position (x, y, z), orientation (expressed as a unit quaternion),
velocity (ẋ, ẏ, ż) and angular velocity (ωx, ωy, ωz). The helicopter is controlled by a 4-dimensional
action space (u1, u2, u3, u4). By using the cyclic pitch (u1, u2) and tail rotor (u3) controls, the pilot
can rotate the helicopter around each of its main axes and bring the helicopter to any orientation.
This allows the pilot to direct the thrust of the main rotor in any particular direction (and thus fly
in any particular direction). By adjusting the collective pitch angle (control inputu4), the pilot can
adjust the thrust generated by the main rotor. For a positive collective pitch angle the main rotor will
blow air downward relative to the helicopter. For a negative collective pitch angle the main rotor
will blow air upward relative to the helicopter. The latter allows for inverted flight.

Following [1] we learn a model from flight data that predicts accelerations as a function of the current
state and inputs. Accelerations are then integrated to obtain the helicopter states over time. The key
idea from [1] is that, after subtracting out the effects of gravity, the forces and moments acting on the
helicopter are independent of position and orientation of the helicopter, when expressed in a “body
coordinate frame”, a coordinate frame attached to the body of the helicopter. This observation allows
us to significantly reduce the dimensionality of the model learning problem. In particular, we use
the following model:

ẍb = Axẋb + gb
x + wx,

ÿb = Ay ẏb + gb
y + D0 + wy,

z̈b = Az ż
b + gb

z + C4u4 + E0‖(ẋ
b, ẏb, żb)‖2 + D4 + wz,



ω̇b
x = Bxωb

x + C1u1 + D1 + wωx
,

ω̇b
y = Byωb

y + C2u2 + C24u4 + D2 + wωy
,

ω̇b
z = Bzω

b
z + C3u3 + C34u4 + D3 + wωz

.

By our convention, the superscriptsb indicate that we are using a body coordinate frame with the
x-axis pointing forwards, the y-axis pointing to the right and the z-axis pointing down with re-
spect to the helicopter. We note our model explicitly encodes the dependence on the gravity vector
(gb

x, gb
y, gb

z) and has a sparse dependence of the accelerations on the current velocities, angular rates
and inputs. This sparse dependence was obtained by scoring different models by their simulation ac-
curacy over time intervals of two seconds (similar to [4]). We estimate the coefficientsA·, B·, C·, D·

andE· from helicopter flight data. First we obtain state and acceleration estimates using a highly
optimized extended Kalman filter, then we use linear regression to estimate the coefficients. The
termswx, wy, wz, wωx

, wωy
, wωz

are zero mean Gaussian random variables, which represent the
perturbations to the accelerations due to noise (or unmodeled effects). Their variances are estimated
as the average squared prediction error on the flight data we collected.

The coefficientD0 captures sideways acceleration of the helicopter due to thrust generated by the
tail rotor. The termE0‖(ẋ

b, ẏb, żb)‖2 models translational lift: the additional lift the helicopter gets
when flying at higher speed. Specifically, during hover, the helicopter’s rotor imparts a downward
velocity on the air above and below it. This downward velocity reduces the effective pitch (angle of
attack) of the rotor blades, causing less lift to be produced [14, 20]. As the helicopter transitions into
faster flight, this region of altered airflow is left behind and the blades enter “clean” air. Thus, the
angle of attack is higher and more lift is produced for a given choice of the collective control (u4).
The translational lift term was important for modeling the helicopter dynamics during the funnels.
The coefficientC24 captures the pitch acceleration due to main rotor thrust. This coefficient is non-
zero since (after equipping our helicopter with our sensor packages) the center of gravity is further
backward than the center of main rotor thrust.

There are two notable differences between our model and the most common previously proposed
models (e.g., [15, 8]): (1) Our model does not include the inertial coupling between different axes of
rotation. (2) Our model’s state does not include the blade-flapping angles, which are the angles the
rotor blades make with the helicopter body while sweeping through the air. Both inertial coupling
and blade flapping have previously been shown to improve accuracy of helicopter models for other
RC helicopters. However, extensive attempts to incorporate them into our model have not led to
improved simulation accuracy. We believe the effects of inertial coupling to be very limited since
the flight regimes considered do not include fast rotation around more than one main axis simulta-
neously. We believe that—at the 0.1s time scale used for control—the blade flapping angles’ effects
are sufficiently well captured by using a first order model from cyclic inputs to roll and pitch rates.
Such a first order model maps cyclic inputs to angular accelerations (rather than the steady state
angular rate), effectively capturing the delay introduced by the blades reacting (moving) first before
the helicopter body follows.

3 Controller Design
3.1 Reinforcement Learning Formalism and Differential Dynamic Programming (DDP)
A reinforcement learning problem (or optimal control problem) can be described by a Markov deci-
sion process (MDP), which comprises a sextuple(S,A, T,H, s(0), R). HereS is the set of states;
A is the set of actions or inputs;T is the dynamics model, which is a set of probability distributions
{P t

su} (P t
su(s′|s, u) is the probability of being in states′ at timet + 1 given the state and action at

time t ares andu); H is the horizon or number of time steps of interest;s(0) ∈ S is the initial state;
R : S ×A → R is the reward function.

A policy π = (µ0, µ1, · · · , µH) is a tuple of mappings from the set of statesS to the set of ac-
tions A, one mapping for each timet = 0, · · · ,H. The expected sum of rewards when acting
according to a policyπ is given by:E[

∑H

t=0
R(s(t), u(t))|π]. The optimal policyπ∗ for an MDP

(S,A, T,H, s(0), R) is the policy that maximizes the expected sum of rewards. In particular, the
optimal policy is given byπ∗ = arg maxπ E[

∑H

t=0
R(s(t), u(t))|π].

The linear quadratic regulator (LQR) control problem is a special class of MDPs, for which the
optimal policy can be computed efficiently. In LQR the set of states is given byS = R

n, the set of
actions/inputs is given byA = R

p, and the dynamics model is given by:
s(t + 1) = A(t)s(t) + B(t)u(t) + w(t),



where for allt = 0, . . . ,H we have thatA(t) ∈ R
n×n, B(t) ∈ R

n×p andw(t) is a zero mean
random variable (with finite variance). The reward for being in states(t) and taking action/input
u(t) is given by:

−s(t)>Q(t)s(t) − u(t)>R(t)u(t).

HereQ(t), R(t) are positive semi-definite matrices which parameterize the reward function. It is
well-known that the optimal policy for the LQR control problem is a linear feedback controller
which can be efficiently computed using dynamic programming. Although the standard formula-
tion presented above assumes the all-zeros state is the most desirable state, the formalism is easily
extended to the task of tracking a desired trajectorys∗

0
, . . . , s∗H . The standard extension (which we

use) expresses the dynamics and reward function as a function of the error statee(t) = s(t)− s∗(t)
rather than the actual states(t). (See, e.g., [5], for more details on linear quadratic methods.)

Differential dynamic programming (DDP) approximately solves general continuous state-space
MDPs by iterating the following two steps:

1. Compute a linear approximation to the dynamics and a quadratic approximation to the
reward function around the trajectory obtained when using the current policy.

2. Compute the optimal policy for the LQR problem obtained in Step 1 and set the current
policy equal to the optimal policy for the LQR problem.

In our experiments, we have a quadratic reward function, thus the only approximation made in the
first step is the linearization of the dynamics. To bootstrap the process, we linearized around the
target trajectory in the first iteration.1

3.2 DDP Design Choices
Error state. We use the following error statee = (ẋb − (ẋb)∗, ẏb − (ẏb)∗, żb − (żb)∗, x − x∗, y −
y∗, z − z∗, ω̇b

x − (ω̇b
y)∗, ω̇b

y − (ω̇b
y)∗, ω̇b

z − (ω̇b
z)

∗,∆q). Here∆q is the axis-angle representation of
the rotation that transforms the coordinate frame of the target orientation into the coordinate frame
of the actual state. This axis angle representation results in the linearizations being more accurate
approximations of the non-linear model since the axis angle representation maps more directly to
the angular rates than naively differencing the quaternions or Euler angles.

Cost for change in inputs. Using DDP as thus far explained resulted in unstable controllers on
the real helicopter: The controllers tended to rapidly switch between low and high values, which
resulted in poor flight performance. Similar to frequency shaping for LQR controllers (see, e.g., [5]),
we added a term to the reward function that penalizes the change in inputs over consecutive time
steps.

Controller design in two phases. Adding the cost term for the change in inputs worked well for
the funnels. However flips and rolls do require some fast changes in inputs. To still allow aggressive
maneuvering, we split our controller design into two phases. In the first phase, we used DDP to find
the open-loop input sequence that would be optimal in the noise-free setting. (This can be seen as
a planning phase and is similar to designing a feedforward controller in classical control.) In the
second phase, we used DDP to design our actual flight controller, but we now redefine the inputs as
the deviation from the nominal open-loop input sequence. Penalizing for changes in the new inputs
penalizes only unplanned changes in the control inputs.

Integral control. Due to modeling error and wind, the controllers (so far described) have non-zero
steady-state error. Each controller generated by DDP is designed using linearized dynamics. The
orientation used for linearization greatly affects the resulting linear model. As a consequence, the
linear model becomes significantly worse an approximation with increasing orientation error. This
in turn results in the control inputs being less suited for the current state, which in turn results in
larger orientation error, etc. To reduce the steady-state orientation errors—similar to the I term

1For the flips and rolls this simple initialization did not work: Due to the target trajectory being too far from
feasible, the control policy obtained in the first iteration of DDP ended up following a trajectory for which the
linearization is inaccurate. As a consequence, the first iteration’s control policy (designed for the time-varying
linearized models along the target trajectory) was unstable in the non-linear model and DDP failed to converge.
To get DDP to converge to good policies we slowly changed the model from a model in which control is trivial
to the actual model. In particular, we change the model such that the next state isα times the target state plus
1 − α times the next state according to the true model. By slowly varyingα from 0.999 to zero throughout
DDP iterations, the linearizations obtained throughout are good approximations and DDP converges to a good
policy.



in PID control—we augment the state vector with integral termsfor the orientation errors. More
specifically, the state vector at timet is augmented with

∑t−1

τ=0
0.99t−τ∆q(τ). Our funnel controllers

performed significantly better with integral control. For the flips and rolls the integral control seemed
to matter less.2

Factors affecting control performance. Our simulator included process noise (Gaussian noise on
the accelerations as estimated when learning the model from data), measurement noise (Gaussian
noise on the measurements as estimated from the Kalman filter residuals), as well as the Kalman
filter and the low-pass filter, which is designed to remove the high-frequency noise from the IMU
measurements.3 Simulator tests showed that the low-pass filter’s latency and the noise in the state
estimates affect the performance of our controllers most. Process noise on the other hand did not
seem to affect performance very much.

3.3 Trade-offs in the reward function
Our reward function contained 24 features, consisting of the squared error state variables, the
squared inputs, the squared change in inputs between consecutive timesteps, and the squared integral
of the error state variables. For the reinforcement learning algorithm to find a controller that flies
“well,” it is critical that the correct trade-off between these features is specified. To find the correct
trade-off between the 24 features, we first recorded a pilot’s flight. Then we used the apprentice-
ship learning via inverse reinforcement learning algorithm [2]. The inverse RL algorithm iteratively
provides us with reward weights that result in policies that bring us closer to the expert. Unfortu-
nately the reward weights generated throughout the iterations of the algorithm are often unsafe to
fly on the helicopter. Thus rather than strictly following the inverse RL algorithm, we hand-chose
reward weights that (iteratively) bring us closer to the expert human pilot by increasing/decreasing
the weights for those features that stood out as mostly different from the expert (following the phi-
losophy, but not the strict formulation of the inverse RL algorithm). The algorithm still converged
in a small number of iterations.

4 Experiments
Videos of all of our maneuvers are available at the URL provided in the introduction.

4.1 Experimental Platform
The helicopter used is an XCell Tempest, a competition-class aerobatic helicopter (length 54”, height
19”, weight 13 lbs), powered by a 0.91-size, two-stroke engine. Figure 2 (c) shows a close-up of the
helicopter. We instrumented the helicopter with a Microstrain 3DM-GX1 orientation sensor, and a
Novatel RT2 GPS receiver. The Microstrain package contains triaxial accelerometers, rate gyros,
and magnetometers. The Novatel RT2 GPS receiver uses carrier-phase differential GPS to provide
real-time position estimates with approximately 2cm accuracyas long as its antenna is pointing at
the sky. To maintain position estimates throughout the flips and rolls, we have used two different se-
tups. Originally, we used a purpose-built cluster of four U-Blox LEA-4T GPS receivers/antennas for
velocity sensing. The system provides velocity estimates with standard deviation of approximately
1 cm/sec (when stationary) and 10cm/sec (during our aerobatic maneuvers). Later, we used three
PointGrey DragonFly2 cameras that track the helicopter from the ground. This setup gives us 25cm
accurate position measurements. For extrinsic camera calibration we collect data from the Novatel
RT2 GPS receiver while in view of the cameras. A computer on the ground uses a Kalman filter to
estimate the state from the sensor readings. Our controllers generate control commands at 10Hz.

4.2 Experimental Results
For each of the maneuvers, the initial model is learned by collecting data from a human pilot fly-
ing the helicopter. Our sensing setup is significantly less accurate when flying upside-down, so all
data for model learning is collected from upright flight. The model used to design the flip and roll
controllers is estimated from 5 minutes of flight data during which the pilot performs frequency
sweeps on each of the four control inputs (which covers as similar a flight regime as possible with-
out having to invert the helicopter). For the funnel controllers, we learn a model from the same
frequency sweeps and from our pilot flying the funnels. For the rolls and flips the initial model was
sufficiently accurate for control. For the funnels, our initial controllers did not perform as well, and
we performed two iterations of the apprenticeship learning algorithm described in Section 2.1.

2When adding the integrated error in position to the cost we did not experience any benefits. Even worse,
when increasing its weight in the cost function, the resulting controllers were often unstable.

3The high frequency noise on the IMU measurements is caused by the vibration of the helicopter. This
vibration is mostly caused by the blades spinning at 25Hz.



4.2.1 Flip
In the ideal forward flip, the helicopter rotates 360 degrees forward around its lateral axis (the axis
going from the right to the left of the helicopter) while staying in place. The top row of Figure 1 (a)
shows a series of snapshots of our helicopter during an autonomous flip. In the first frame, the
helicopter is hovering upright autonomously. Subsequently, it pitches forward, eventually becoming
vertical. At this point, the helicopter does not have the ability to counter its descent since it can only
produce thrust in the direction of the main rotor. The flip continues until the helicopter is completely
inverted. At this moment, the controller must apply negative collective to regain altitude lost during
the half-flip, while continuing the flip and returning to the upright position.

We chose the entries of the cost matricesQ andR by hand, spending about an hour to get a controller
that could flip indefinitely in our simulator. The initial controller oscillated in reality whereas our
human piloted flips do not have any oscillation, so (in accordance with the inverse RL procedure, see
Section 3.3) we increased the penalty for changes in inputs over consecutive time steps, resulting in
our final controller.

4.2.2 Roll
In the ideal axial roll, the helicopter rotates 360 degrees around its longitudinal axis (the axis going
from the back to the front of the helicopter) while staying in place. The bottom row of Figure 1 (b)
shows a series of snapshots of our helicopter during an autonomous roll. In the first frame, the
helicopter is hovering upright autonomously. Subsequently it rolls to the right, eventually becoming
inverted. When inverted, the helicopter applies negative collective to regain altitude lost during the
first half of the roll, while continuing the roll and returning to the upright position. We used the
same cost matrices as for the flips.

4.2.3 Tail-In Funnel
The tail-in funnel maneuver is essentially a medium to high speed circle flown sideways, with the
tail of the helicopter pointed towards the center of the circle. Throughout, the helicopter is pitched
backwards such that the main rotor thrust not only compensates for gravity, but also provides the
centripetal acceleration to stay in the circle. For a funnel of radiusr at velocityv the centripetal
acceleration isv2/r, so—assuming the main rotor thrust only provides the centripetal acceleration
and compensation for gravity—we obtain a pitch angleθ = atan(v2/(rg)). The maneuver is named
after the path followed by the length of the helicopter, which sweeps out a surface similar to that of
an inverted cone (or funnel).4 For the funnel reported in this paper, we hadH = 80 s,r = 5 m, and
v = 5.3 m/s (which yields a 30 degree pitch angle during the funnel). Figure 1 (c) shows an overlay
of snapshots of the helicopter throughout a tail-in funnel.

The defining characteristic of the funnel is repeatability—the ability to pass consistently through the
same points in space after multiple circuits. Our autonomous funnels are significantly more accurate
than funnels flown by expert human pilots. Figure 2 (a) shows a complete trajectory in (North, East)
coordinates. In figure 2 (b) we superimposed the heading of the helicopter on a partial trajectory
(showing the entire trajectory with heading superimposed gives a cluttered plot). Our autonomous
funnels have an RMS position error of 1.5m and an RMS heading error of 15 degrees throughout
the twelve circuits flown. Expert human pilots can maintain this performance at most through one
or two circuits.5

4.2.4 Nose-In Funnel
The nose-in funnel maneuver is very similar to the tail-in funnel maneuver, except that the nose
points to the center of the circle, rather than the tail. Our autonomous nose-in funnel controller
results in highly repeatable trajectories (similar to the tail-in funnel), and it achieves a level of
performance that is difficult for a human pilot to match. Figure 1 (d) shows an overlay of snapshots
throughout a nose-in funnel.

5 Conclusion
To summarize, we presented our successful DDP-based control design for four new aerobatic ma-
neuvers: forward flip, sideways roll (at low speed), tail-in funnel, and nose-in funnel. The key
design decisions for the DDP-based controller to fly our helicopter successfully are the following:

4The maneuver is actually broken into three parts: an accelerating leg, the funnel leg, and a decelerating leg.
During the accelerating and decelerating legs, the helicopter accelerates atamax(= 0.8m/s2) along the circle.

5Without the integral of heading error in the cost function we observed significantly larger heading errors
of 20-40 degrees, which resulted in the linearization being so inaccurate that controllers often failed entirely.



Figure 1: (Best viewed in color.) (a) Series of snapshots throughout an autonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the helicopter throughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnel. (See text for details.)
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Figure 2: (a) Trajectory followed by the helicopter during tail-in funnel. (b) Partial tail-in funnel trajectory with
heading marked. (c) Close-up of our helicopter. (See text for details.)

We penalized for rapid changes in actions/inputs over consecutive time steps. We used apprentice-
ship learning algorithms, which take advantage of an expert demonstration, to determine the reward
function and to learn the model. We used a two-phase control design: the first phase plans a feasible
trajectory, the second phase designs the actual controller. Integral penalty terms were included to
reduce steady-state error. To the best of our knowledge, these are the most challenging autonomous
flight maneuvers achieved to date.
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