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Abstract

Many recent studies analyze how data from different modalities can be combined.
Often this is modeled as a system that optimally combines several sources of in-
formation about the same variable. However, it has long been realized that this
information combining depends on the interpretation of the data. Two cues that
are perceived by different modalities can have different causal relationships: (1)
They can both have the same cause, in this case we should fully integrate both
cues into a joint estimate. (2) They can have distinct causes, in which case in-
formation should be processed independently. In many cases we will not know
if there is one joint cause or two independent causes that are responsible for the
cues. Here we model this situation as a Bayesian estimation problem. We are thus
able to explain some experiments on visual auditory cue combination as well as
some experiments on visual proprioceptive cue integration. Our analysis shows
that the problem solved by people when they combine cues to produce a move-
ment is much more complicated than is usually assumed, because they need to
infer the causal structure that is underlying their sensory experience.

1 Introduction

Our nervous system is constantly integrating information from many different sources into a unified
percept. When we interact with objects for example we see them and feel them and often enough
we can also hear them. All these pieces of information need to be combined into a joint percept.

Traditionally, cue combination is formalized as a simple weighted combination of estimates coming
from each modality (Fig 1A). According to this view the nervous system acquires these weights
through some learning process [1]. Recently many experiments have shown that various manip-
ulations, such as degrading the quality of the feedback from one modality, can vary the weights.
Recently, these experiments have been phrased in a Bayesian framework, assuming that all the cues
are about one given variable. Research often focuses on exploring in which coordinate system the
problem is being solved [2, 3] and how much weight is given to each variable as a function of the
uncertainty in each modality and the prior[4, 5, 6, 7, 8]. Throughout this paper we consider cue
combination to estimate a position. Cue combination may, however, be equally important when es-
timating many other variables such as the nature of material, the weight of an object or the relevant
aspects of a social situation.

These studies focus on the way information is combined and assume that is known that there is just
one cause for the cues. However, in many cases people can not be certain of the causal structure. If
two cues share a common cause (as in Fig 1B) they should clearly be combined. In general, however,
there may either be one common cause – or two separate causes(Fig 1C). In such cases people can
not know which of the two models to use and have to estimate the causal structure of the problem
along with the parameter values. The issue of causal inference has long been an exciting question in
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Figure 1: Different causal structures of two cues. Bold circles indicate the variables the subjects are
interested in. A) The traditional view is sketched where the estimate is a weighted combination of
the estimates of each modality. B) One cause can be responsible for both cues. In this case cues
should be combined to infer about the single cause. C) In many cases people will be unable to know
if one common cause or two independent causes are responsible for the cues. In that case people
will have to estimate which causal structure is present from the properties of their sensory stimuli.

the psychological community [9, 10, 11, 12]. Here we derive a rigorous model of causal inference
in the context of psychophysical experiments.

2 Cue combination: one common cause

A large number of recent studies have interpreted the results from cue combination studies in a
Bayesian framework[13]. We discuss the case of visuoauditory integration as the statistical relations
are identical in other cue combination cases. A statistical generative model for the data is formulated
(see figure 1B). It is acknowledged that if a signal is coming from a specific position the signal
received by the nervous system in each modality will be noisy. If the real position of a stimulus is
xreal then the nervous system will not be able to directly know this variable but the visual modality
will obtain a noisy estimate thereof xvis. Typically it is assumed that in the process that the visually
perceived position is a noisy version of the real position xvis = xreal+noise. A statistical treatment
thus results in p(xvis|xreal) = N(xreal − xvis, σvis) where σvis is the variance introduced by the
visual modality and N(μ, σ) stands for a Gaussian distribution with mean μ and standard deviation
σ. If two cues are available, for example vision and audition then it is assumed that both cues x vis

and xaud provide noisy observations of the relevant variable x real. Using the assumption that each
modality provides an independent measurement of x real Bayes rule yields:

p(xreal|xvis, xaud) ∝ p(xreal)p(xvis, xaud|xreal) (1)

= p(xreal)p(xvis|xreal)p(xaud|xreal) (2)

The estimate that minimizes the mean squared error is then:

x̂ = γxvis + (1 − γ)xaud (3)

where γ = σ2
aud/(σ2

aud + σ2
vis). The optimal solution is thus a weighing of the estimates from

both modalities but the weighing is a function of the variances. Given the variances of the cues,
it is possible to predict the weighing people should optimally use. Over the last couple of years
various studies have described this approach. These papers assumed that we have two sources of
information about one and the same variable and have shown that in psychophysical experiments
people often show this kind of optimal integration and that the weights can be predicted from the
variances [13, 14, 15, 4, 16]. However, in all these cases there is ample of evidence provided to the
subjects that just one single variable is involved in the experiment. For example in [4] a stimulus is
felt and seen at exactly the same position.

3 Combination of visual and auditory cues: uncertainty about the causal
structure

Here we consider the range of experiments where people hear a tone and simultaneously see a visual
stimulus that may or may not come from the same position. Subjects are asked to estimate which
direction the tone is coming from and point to that direction – placing this experiment in the realm
of sensorimotor integration.



Subjects are asked to estimate which direction the tone is coming from and do so with a motor
response. To optimally estimate where the tone is coming from people need to infer the causal
structure (Fig 1 C) and decide if they should assume a single cause or two causes. Based on this
calculation they can proceed to estimate where the tone is coming from. The Schirillo group has
extensively tested human behavior in such a situation [17, 18]. For different distances between the
visual and the auditory stimulus they analyzed the strategies people use to estimate the position of
the auditory stimuli (see figure 2). It has long been realized that integration of different cues should
only occur if the cues have the same cause [9, 10, 8, 19].

3.1 Loss function and probabilistic model

To model this choice phenomenon we assume that the estimate should be as precise as possible and
that this error function is minimized:

E(xestimated) =
∫

p(xtrue|cues)(xtrue − xestimated)2dxtrue (4)

We assume that subjects have obtained a prior estimate psame of how likely it is that a visual and an
auditory signal that appear near instantaneously have the same cause. In everyday life this will not
be constant but depend on temporal delays, visual experience, context and many other factors. In
the experiments we consider all these factors are held constant so we can use a constant p same. We
assume that positions are drawn from a Gaussian distribution with a width σpos.

3.2 Inference

The probability that the two signals are from the same source will only weakly depend on the spatial
prior but mostly depend on the distance Δav = xaud−xvis between visually and auditory perceived
positions. We thus obtain:

p(same|Δav)
p(different|Δav)

=
psamep(Δav|same)

(1 − psame)p(Δav|different)
(5)

Using p(same|Δav) + p(different|Δav) = 1 we can readily calculate the probability p(same|Δav)
of the two signals coming from the same source.

Using Equation 4 we can then calculate the optimal solution which is:

x̂ = p(same|Δav)x̂same + (1 − p(same|Δav))x̂different (6)

We know the optimal estimates in the same case already from equation 3 and in the different case the
optimal estimate exclusively relies on the auditory signal. We furthermore assume that the position
sensed by the sensory system is a noisy version of xobserved = x̂ + ε where ε is drawn from a
Gaussian with zero mean and a standard deviation of σmotor. We are thus able to calculate the
optimal estimate and the expected uncertainty given our assumptions.

3.3 Model parameter estimation

The prior psame characterizes how likely given the temporal delay and other experimental parame-
ters it is a priori that two signals have the same source. As this characterizes a property of everyday
life we can not readily estimate this parameter but instead fit it to the gain (α) data. To compare
the predictions of our model with the experimental data we need to know the values of the variables
that characterize our model. Vision is much more precise than audition in such situations. We esti-
mate the relevant uncertainties as follows. In both auditory and visual trials the noise will have two
sources, motor noise and sensory noise. Even if people knew perfectly where a stimulus was coming
from they would make small errors at pointing because their motor system is not perfect. We assume
that visual only trials are dominated by motor noise, stemming from motor errors and memory errors
and that the noise in the visual trials is essentially exclusively motor noise (σvis = 0.01). Choosing
a smaller σvis does not change the results to any meaningful degree. From figure 2 of the exper-
iments by Hairston et al [17] where movements are made towards unimodally presented cues we
obtain σmotor = 2.5 deg and because variances are added linearly σaud =

√
82 − 2.52 = 7.6 deg.
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Figure 2: Uncertainty if one or two causes are relevant. Experimental data reprinted with permission
from [18]. A) The gain, the relative weight of vision for the estimation of the position of the auditory
signal is shown. It is plotted as a function of the spatial disparity, the distance between visual and
auditory stimulus. A gain value of α = 100% implies that subjects only use visual information. A
negative α means that on average subjects point away from the visual stimulus. Different models of
human behavior make different preditictions. B) A sketch explaining the finding of negative gains.
The visual stimulus is always at -5 deg (solid line) and the auditory stimulus is always straight ahead
at 0deg(dotted line). Visual perception is very low noise and the perceived position x vis is shown as
red dots (each dot is one trial). Auditory perception is noisy and the perceived auditory position x aud

is shown as black dots. In the white area where the subject perceive two causes, the average position
of perceived auditory signals is further to the right. This explains the negative bias in reporting:
when perceiving two causes, subjects are more likely to have heard a signal to the right. Those trials
that are not unified thus exhibit a selection bias that confers the negative gain. C) The measured
standard deviation of the human pointing behavior are shown as a function of the spatial disparity.
The standard deviations predicted by the model are shown as well. Same colors as in A)

We want to remark that this estimation is only approximate because people can use priors and com-
bine them with likelihoods and objective functions for making their estimates even in the unimodal
case. We also want to emphasize that we in no way tried to tune these parameters to lead to better
fits of the data. From the specifications of the experiments we know that the distribution of auditory
sources has a width of 20deg relative to the fixation point and we assume that this width is known
to the subjects from repeated trials.

3.4 Comparison of the model with the experimental data

Figure 2A shows a comparison between the gains (α) measured in the experiment of [17] with the
gains (alpha) predicted by the Bayesian model. psame = 0.57 was fitted to the data. We assume that
the model reports identical whenever one source is a posteriori more probable than two sources. The
model predicts the counterintuitive finding that the trials where people inferred two causes exhibit
negative gain. Figure 2B explains why negative gains are found. The model explains 99% of the
variance of the gain with just one free parameter psame. Very similar effects are found if we fix
psame at 0.5 assuming that fusion and segregation are equally likely and this parameter free model
still explains 98% of the variance. The simple full combination model (shown in green) that does
not allow for two sources completely fails to predict any of these effects even when fitting all the
standard deviations and thus explains 0% of the variance of the gains. The results clearly rule out a
strategy in which all cues are always combined.

On some trials noise in the auditory signal will make it appear as if the auditory signal is very close
to the visual signal. In this case the system will infer that both have the same source and part of the
reported high gain for the fused cases will be because noise already perturbed the auditory signal
towards the visual. However, on some trials the auditory signal will be randomly perturbed away
from the visual signal. In this case the system will infer that very likely the two signals have different
sources. Because both estimation of position and the estimation of identity are based on the same
noisy signal the two processes are not independent of one another. This lack of independence is
causing the difference between the fusion and the no-fusion case.



3.5 Maximum A Posteriori over causal structure

In the derivations above we assumed that people are fully Bayesian, in the sense that they consider
both possible structures for cue-integration and integrate over them to arrive at an optimal decision.
An alternative would be a Maximum A Posteriori (MAP) approach: people could first choose the
appropriate structure one source or two and then use only that structure for subsequent decisions.
Figure 2A shows that this model (we fitted psame = 0.72) also well predicts the main effect and
explains 98% of the variance of the gains. To test how the two models compare we looked at the
standard deviations that had also been measured in the [17] experiment. The fully Bayesian model
explains 65% of the variance of the standard deviation plot and the MAP model explains 0% of the
variance of that plot. This difference is observed because the MAP model strongly underestimates
the uncertainty in the single cause case and strongly overestimates the uncertainty in the dual cause
case (Fig 2C). The Bayesian model on the other hand always considers that it could be wrong,
leading to more variance in the single cause case and less in the dual cause case. Even the Bayesian
system tends to predict overly large standard deviations in the case of two causes. This effect
goes away if we assume that people underestimate the variance of the auditory source relative to
the fixation spot (data not shown). A deeper analysis taking into account all the available data
and its variance over subjects will be necessary to test if a MAP strategy can be ruled out. The
present analysis may lead to an understanding of the inference algorithm used by the nervous system.

In summary, the problem of crossmodal integration is much more complicated than it seems as it
necessitates inference of the causal structure. People still solve this complicated problem in a way
that can be understood as being close to optimal.

4 Combination of visual and proprioceptive cues

Typical experiments in movement psychophysics where a virtual reality display is used to disturb
the perceived position of the hand lead to an analogous problem. In these experiments subjects
proprioceptively feel their hand somewhere, but they cannot see their hand; at the same time, they
visually perceive a cursor somewhere. Subjects again can not be sure if the seen cursor position
and the felt hand position are cues about the same variable (hand=cursor) or if each of them are
independent and the experiment is just cheating them leading to the same causal structure inference
problem described above. In this section we extend the model to also explain such sensorimotor
integration.

We model the studies by Sober and Sabes [5, 6] that inspired this work. In these experiments one
hand is moving a cursor to either the position of a visually displayed (v) target or the position of
the other hand (p). People need to estimate two distinct variables: (1) the direction in which they
are to move their arm, a visually perceived variable, the so-called movement vector (MV) and (2)
a proprioceptively perceived variable, the configuration of their joints (J). Subjects obtain visual
information about the position of the cursor and they obtain proprioceptive information from feeling
the position of their hand.

Traditionally it would have been assumed that the seen cursor position and the proprioceptively felt
hand position are cues caused by one single variable, the hand. As a result, the position of the
cursor uniquely defines the configuration of the joints and vice versa. As in the cue combination
case above there should not be full cue combination but instead each variable (MV) and (J) should
be estimated separately. In this experiment a situation is produced where the visual position of
a cursor is different from the actual position of the right hand. Subjects are then asked to move
their hand towards targets that are in 8 concentric directions. The estimate of the movement vector
affects movements direction in a way that is specific to the target direction. The estimate of the
joint configuration affects movement direction irrespective of the target direction. The experimental
studies then report the gain α, the linear weight α of vision on the estimate of (MV) and (J) in both
the visual and the proprioceptive target conditions(figure 3A and B). If people only inferred about
one common cause then the weight of vision should always be the same, indicating that more than
just one cause is assumed by the subjects.



4.1 Coordinate systems

The probabilistic model that we use is identical to the model introduced above with one exception.
In the sensorimotor integration case there is uncertainty about the alignment of the two coordinate
systems. For example if we hold an arm under a table and where asked to show where the other arm
is under the table we would have significant alignment errors. When using information from one
coordinate system for an estimation in a different coordinate system there is uncertainty about the
alignment of the coordinate systems. This means that when we use visual information to estimate
the position of a joint in joint space our visual system appears to be more noisy and vice versa. As
we are only interested in estimates along one dimension and can model the uncertainty about the
alignment of the coordinate systems as a one dimensional Gaussian with width σ trans. When using
information from one modality for estimations of a variable in the other coordinate system we need
to use σ2

effective = σ2
modality + σ2

trans.

The two target conditions in the experiments, moving the cursor to a visual target (v) and moving
the cursor to the position of the other hand (p) produce two different estimation problems. When
we try to move a cursor to a visually displayed target we must compute MV in visual space. If to
the contrary we try to move a cursor with one hand to the position of the other hand then we must
calculate MV in joint space. Loss functions and therefore necessary estimates are thus defined in
different spaces. Altogether people are faced with 4 problems, they have to estimate (MV) and (J)
in both the visual (v) condition and the proprioceptive (p) condition.

4.2 Probabilistic model

As above we assume that visual and proprioceptive uncertainty lead to probability distributions in
the respective space that are characterized by Gaussians of width σvis and σprop. These variables are
now defined in terms of position not in terms of direction. Subjects are not asked if they experience
one or two causes. Under these circumstances it is only important how likely on average people find
that the two percepts are unified (punified = psamep(Δpv|same)). We assume that when moving
the cursor to a visual target the average squared deviation of the cursor and the target in visual
space is minimized. We assume that when moving the cursor to a proprioceptive target the average
squared deviation of the cursor and the target in proprioceptive space is minimized. Apart from this
difference the whole derivation of the equations is identical to the one above for the auditory visual
integration. However, the results are not analyzed conditional on the inference of one or two causes
but averaged over these.

4.3 Tool use

Above we assumed that cursor and hand either have the same cause (the position of the hand, or
different causes and are therefore unrelated. Another way of thinking about the Sober and Sabes
experiments could be in terms of tool use. The cursor could be seen as a tool that is seen displaced
relative to our hand. The tip of the tool will move with our hand. As tools are typically short the
probability is largest that the tip of a tool is at the position of the hand and this probability will decay
with increasing distance between the hand and the position of the tool. The distance between the tip
of the tool and the hand is thus another random variable that is assumed to be Gaussian with width
σtool (see fig. 3E). The minimal end point error solutions of this are:

αMV,v = (σ2
prop + σ2

trans + σ2
tool)/(σ2

prop + σ2
vis + σ2

trans + σ2
tool) (7)

αJ,v = (σ2
prop + σ2

trans)/(σ2
prop + σ2

vis + σ2
trans + σ2

tool) (8)

αMV,p = (σ2
prop + σ2

tool)/(σ2
prop + σ2

vis + σ2
trans + σ2

tool) (9)

αJ,p = (σ2
prop)/(σ2

prop + σ2
vis + σ2

trans + σ2
tool) (10)

We are thus able to predict the weights that people should use if they assume a causal relationship
deriving from tool use.

4.4 Comparison of the model with the data

We add to the Bayesian model introduced above a part for modeling the uncertainty about the align-
ment of the coordinate systems, and compare the results from this modified model with the data. The
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Figure 3: Cue combination in motor control, experiments from [6] A) The estimated quantities. B)
The two experimental conditions. C)The predictions from the model. D)The predictions obtained
when using the estimate of a specialist. E) The tool use model. The cursor will be close to the
position of the hand. F)The predictions from a tool use model. G)The predictions from a full
combination model.

model has several parameters, important the uncertainties of proprioception and of the coordinate
transformation compared to the visual uncertainty. Another parameter is the probability of unifica-
tion. All parameters are fit to the data. The model explains the data that have a standard deviation of
0.32 with a standard deviation of only 0.08 (Figure 3C). Fitting 3 parameters to 4 data points can be
seen as some major overfitting. To avoid overfitting we guessed punified = 0.5 and asked one of our
colleagues,, Daniel Wolpert, for estimates. He estimated σvis = 1cm,σprop = 3cm,σtrans = 5cm.
With these values we explain the data with a standard deviation of 0.13 capturing all main ef-
fects(Figure 3D). Another experimental modification in [6] deserves mentioning. The image of an
arm is rendered on top of the cursor position. The experiment finds that this has the effect that people
rely much more on vision for estimating their joint configuration. In our interpretation, the rendering
of the arm makes the probability much higher that actually the position of the visual display is the
position of the hand and punified would be much higher.

4.5 Analysis if subjects view a cursor as a tool

Another possible model that seemed very likely to us was assuming that the cursor should appear
somewhere close to the hand modeling the cursor hand relationship as another Gaussian variable
(Fig 3E). We fit the 3 parameters of this model, the uncertainty of proprioception and the coordinate
transformation relative to the visual uncertainty as well as the width of the Gaussian describing
the tool. Figure 3F shows that this model too can fit the main results of the experiment. With a
standard deviation of the residual of 0.14 however it does worse than the parameter free model
above. If we take the values given by Daniel Wolpert (see above) and fit the value of σ tool we obtain
a standard deviation of 0.28. This model of tool use seems to thus be doing poorer than the model
we introduced earlier.

Sober and Sabes [5, 6] explain the finding that two variables are estimated by the finding that cortex
exhibits two important streams of information processing, one for visual processing and the other for
motor tasks [20]. The model we present here gives a reason for the estimation of distinct variables.
If people see a cursor close to their hand they do not assume that they actually see their hand. The
models that we introduced can be understood as special instantiations of a model where the cursor
position relative to the hand is drawn from a general probability distribution.



5 Discussion

An impressive range of recent studies show that people do not just estimate one variable in situations
of cue combination [5, 6, 17, 18]. Here we have shown that the statistical problem that people solve
in such situations involves an inference about the causal structure. People have uncertainty about
the identity and number of relevant variables. The problem faced by the nervous system is similar
to cognitive problems that occur in the context of causal induction. Many experiments show that
people and in particular infants interpret events in terms of cause and effect [11, 21, 22]. The
results presented here show that sensorimotor integration exhibits some of the factors that make
human cognition difficult. Carefully studying and analyzing seemingly simple problems such as cue
combination may provide a fascinating way of studying the human cognitive system in a quantitative
fashion.
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