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Abstract

We consider the problem of learning accurate models from multiple sources of
“nearby” data. Given distinct samples from multiple data sources and estimates
of the dissimilarities between these sources, we provide a general theory of which
samples should be used to learn models for each source. This theory is applicable
in a broad decision-theoretic learning framework, and yields results for classifi-
cation and regression generally, and for density estimation within the exponential
family. A key component of our approach is the development ofapproximate
triangle inequalities for expected loss, which may be of independent interest.

1 Introduction

We introduce and analyze a theoretical model for the problemof learning from multiple sources of
“nearby” data. As a hypothetical example of where such problems might arise, consider the follow-
ing scenario: For each web user in a large population, we wishto learn a classifier for what sites
that user is likely to find “interesting.” Assuming we have atleast a small amount of labeled data for
each user (as might be obtained either through direct feedback, or via indirect means such as click-
throughs following a search), one approach would be to applystandard learning algorithms to each
user’s data in isolation. However, if there are natural and accessible measures of similarity between
the interests of pairs of users (as might be obtained throughtheir mutual labelings of common web
sites), an appealing alternative is toaggregatethe data of “nearby” users when learning a classifier
for each particular user. This alternative is intuitively subject to a trade-off between the increased
sample size and how different the aggregated users are.

We treat this problem in some generality and provide a bound addressing the aforementioned trade-
off. In our model there areK unknown data sources, with sourcei generating a distinct sampleSi

of ni observations. We assume we are given only the samplesSi, and adisparity1 matrix D whose
entryD(i, j) bounds the difference between sourcei and sourcej. Given these inputs, we wish to
decide which subset of the samplesSj will result in the best model for each sourcei. Our frame-
work includes settings in which the sources produce data forclassification, regression, and density
estimation (and more generally any additive-loss learningproblem obeying certain conditions).

Our main result is a general theorem establishing a bound on the expected loss incurred by using all
data sources within a given disparity of the target source. Optimization of this bound then yields a
recommended subset of the data to be used in learning a model of each source. Our bound clearly
expresses a trade-off between three quantities: the samplesize used (which increases as we include
data from more distant models), a weighted average of the disparities of the sources whose data is
used, and a model complexity term. It can be applied to any learning setting in which the underlying
loss function obeys anapproximatetriangle inequality, and in which the class of hypothesis mod-
els under consideration obeys uniform convergence of empirical estimates of loss to expectations.

1We avoid using the term distance since our results include settings in which the underlying loss measures
may not be formal distances.



For classification problems, the standard triangle inequality holds. For regression we prove a 2-
approximation to the triangle inequality, and for density estimation for members of the exponential
family, we apply Bregman divergence techniques to provide approximate triangle inequalities. We
believe these approximations may find independent applications within machine learning. Uniform
convergence bounds for the settings we consider may be obtained via standard data-independent
model complexity measures such as VC dimension and pseudo-dimension, or via more recent data-
dependent approaches such as Rademacher complexity.

The research described here grew out of an earlier paper by the same authors [1] which examined
the considerably more limited problem of learning a model when all data sources are corrupted
versions of asingle, fixedsource, for instance when each data source provides noisy samples of a
fixed binary function, but with varying levels of noise. In the current work, each source may be
entirely unrelated to all others except as constrained by the bounds on disparities, requiring us to
develop new techniques. Wu and Dietterich studied similar problems experimentally in the context
of SVMs [2]. The framework examined here can also be viewed asa type of transfer learning [3, 4].

In Section 2 we introduce a decision-theoretic framework for probabilistic learning that includes
classification, regression, density estimation and many other settings as special cases, and then give
our multiple source generalization of this model. In Section 3 we provide our main result, which is
a general bound on the expected loss incurred by using all data within a given disparity of a target
source. Section 4 then applies this bound to a variety of specific learning problems. In Section 5 we
briefly examine data-dependent applications of our generaltheory using Rademacher complexity.

2 Learning models

Before detailing our multiple-source learning model, we first introduce a standard decision-theoretic
learning framework in which our goal is to find a model minimizing a generalized notion of empirical
loss [5]. Let thehypothesis classH be a set of models (which might be classifiers, real-valued
functions, densities, etc.), and letf be thetarget model, which may or may not lie in the class
H. Let z be a (generalized) data point or observation. For instance,in (noise-free) classification
and regression,z will consist of a pair〈x, y〉 wherey = f(x). In density estimation,z is the
observed valuex. We assume that the target modelf induces some underlying distributionPf over
observationsz. In the case of classification or regression,Pf is induced by drawing the inputsx
according to some underlying distributionP, and then settingy = f(x) (possibly corrupted by
noise). In the case of density estimationf simply defines a distributionPf over observationsx.

Each setting we consider has an associatedloss functionL(h, z). For example, in classification we
typically consider the 0/1 loss:L(h, 〈x, y〉) = 0 if h(x) = y, and 1 otherwise. In regression we
might consider the squared loss functionL(h, 〈x, y〉) = (y−h(x))2. In density estimation we might
consider the log lossL(h, x) = log(1/h(x)). In each case, we are interested in the expected loss of
a modelg2 on targetg1, e(g1, g2) = Ez∼Pg1

[L(g2, z)]. Expected loss is not necessarily symmetric.

In our multiple source model, we are presented withK distinct samples orpilesof dataS1, ..., SK ,
and a symmetricK ×K matrixD. Each pileSi containsni observations that are generated from a
fixed and unknown modelfi, andD satisfiese(fi, fj), e(fj , fi) ≤ D(i, j). 2 Our goal is to decide
which pilesSj to use in order to learn the best approximation (in terms of expected loss) to eachfi.

While we are interested in accomplishing this goal for eachfi, it suffices and is convenient to
examine the problem from the perspective of a fixedfi. Thus without loss of generality let us
suppose that we are given pilesS1, ..., SK of sizen1, . . . , nK from modelsf1, . . . , fK such that
ǫ1 ≡ D(1, 1) ≤ ǫ2 ≡ D(1, 2) ≤ · · · ≤ ǫK ≡ D(1,K), and our goal is to learnf1. Here we have
simply taken the problem in the preceding paragraph, focused on the problem forf1, and reordered
the other models according to their proximity tof1. To highlight the distinguished role of the target
f1 we shall denote itf . We denote the observations inSj byzj

1, . . . , z
j
nj

. In all cases we will

analyze, for anyk ≤ K, the hypothesiŝhk minimizing the empirical losŝek(h) on the firstk piles
S1, . . . , Sk, i.e.

2While it may seem restrictive to assume thatD is given, notice thatD(i, j) can be often be estimated from
data, for example in a classification setting in which common instances labeledby bothfi andfj are available.



ĥk = argmin
h∈H

êk(h) = argmin
h∈H

1

n1:k

k
∑

j=1

nj
∑

i=1

L(h, zj
i )

wheren1:k = n1 + · · · + nk. We also denote the expected error of functionh with respect to the
first k piles of data as

ek(h) = E [êk(h)] =

k
∑

i=1

(

ni

n1:k

)

e(fi, h).

3 General theory

In this section we provide the first of our main results: a general bound on the expected loss of the
model minimizing the empirical loss on the nearestk piles. Optimization of this bound leads to a
recommended number of piles to incorporate when learningf = f1. The key ingredients needed to
apply this bound are an approximate triangle inequality anda uniform convergence bound, which
we define below. In the subsequent sections we demonstrate that these ingredients can indeed be
provided for a variety of natural learning problems.

Definition 1 For α ≥ 1, we say that theα-triangle inequality holds for a class of modelsF and
expected loss functione if for all g1, g2, g3 ∈ F we have

e(g1, g2) ≤ α(e(g1, g3) + e(g3, g2)).

The parameterα ≥ 1 is a constant that depends onF ande.

The choiceα = 1 yields the standard triangle inequality. We note that the restriction to models in
the classF may in some cases be quite weak — for instance, whenF is all possible classifiers or
real-valued functions with bounded range — or stronger, as in densities from the exponential family.
Our results will require only that the unknownsourcemodelsf1, . . . , fK lie in F , even when our
hypothesismodels are chosen from some possibly much more restricted classH ⊆ F . For now we
simply leaveF as a parameter of the definition.

Definition 2 A uniform convergence bound for a hypothesis spaceH and loss functionL is a
bound that states that for any0 < δ < 1, with probability at least1− δ for anyh ∈ H

|ê(h)− e(h)| ≤ β(n, δ)

whereê(h) = 1
n

∑n
i=1 L(h, zi) for n observationsz1, . . . , zn generated independently according to

distributionsP1, . . . Pn, ande(h) = E [ê(h)] where the expectation is taken overz1, . . . , zn. β is a
function of the number of observationsn and the confidenceδ, and depends onH andL.

This definition simply asserts that for every model inH, its empirical loss on a sample of sizen
and the expectation of this loss will be “close.” In general the functionβ will incorporate stan-
dard measures of the complexity ofH, and will be a decreasing function of the sample sizen, as
in the classicalO(

√

d/n) bounds of VC theory. Our bounds will be derived from the rich litera-
ture on uniform convergence. The only twist to our setting isthe fact that the observations are no
longer necessarily identically distributed, since they are generated from multiple sources. However,
generalizing the standard uniform convergence results to this setting is straightforward.

We are now ready to present our general bound.

Theorem 1 Let e be the expected loss function for lossL, and letF be a class of models for which
theα-triangle inequality holds with respect toe. LetH ⊆ F be a class of hypothesis models for
which there is a uniform convergence boundβ for L. LetK ∈ N, f = f1, f2, . . . , fK ∈ F , {ǫi}

K
i=1,

{ni}
K
i=1, andĥk be as defined above. For anyδ such that0 < δ < 1, with probability at least1− δ,

for anyk ∈ {1, . . . ,K}

e(f, ĥk) ≤ (α + α2)

k
∑

i=1

(

ni

n1:k

)

ǫi + 2αβ(n1:k, δ/2K) + α2 min
h∈H

{e(f, h)}



Before providing the proof, let us examine the bound of Theorem 1, which expresses a natural and
intuitive trade-off. The first term in the bound is a weightedsum of the disparities of thek ≤ K
models whose data is used with respect to the target modelf = f1. We expect this term toincrease
as we increasek to include more distant piles. The second term is determinedby the uniform
convergence bound. We expect this term todecreasewith added piles due to the increased sample
size. The final term is what is typically called theapproximation error— the residual loss that we
incur simply by limiting our hypothesis model to fall in the restricted classH. All three terms are
influenced by the strength of the approximate triangle inequality that we have, as quantified byα.

The bounds given in Theorem 1 can be loose, but provide an upper bound necessary for optimization
and suggest a natural choice for the number of pilesk∗ to use to estimate the targetf :

k∗ = argmin
k

(

(α + α2)

k
∑

i=1

(

ni

n1:k

)

ǫi + 2αβ(n1:k, δ/2K)

)

.

Theorem 1 and this optimization make the implicit assumption that the best subset of piles to use
will be a prefix of the piles — that is, that we should not “skip”a nearby pile in favor of more distant
ones. This assumption will generally be true for typical data-independent uniform convergence such
as VC dimension bounds, and true on average for data-dependent bounds, where we expect uniform
convergence bounds to improve with increased sample size. We now give the proof of Theorem 1.

Proof: (Theorem 1) By Definition 1, for anyh ∈ H, anyk ∈ {1, . . . K}, and anyi ∈ {1, . . . , k},
(

ni

n1:k

)

e(f, h) ≤

(

ni

n1:k

)

(αe(f, fi) + αe(fi, h))

Summing over alli ∈ {1, . . . , k}, we find

e(f, h) ≤

k
∑

i=1

(

ni

n1:k

)

(αe(f, fi) + αe(fi, h))

= α
k
∑

i=1

(

ni

n1:k

)

e(f, fi) + α
k
∑

i=1

(

ni

n1:k

)

e(fi, h) ≤ α
k
∑

i=1

(

ni

n1:k

)

ǫi + αek(h)

In the first line above we have used theα-triangle inequality to deliberately introduce a weighted
summation involving thefi. In the second line, we have broken up the summation. Notice that the
first summation is a weighted average of the expected loss of eachfi, while the second summation
is the expected loss ofh on the data. Using the uniform convergence bound, we may assert that with
high probabilityek(h) ≤ êk(h) + β(n1:k, δ/2K), and with high probability

êk(ĥk) = min
h∈H

{êk(h)} ≤ min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

e(fi, h) + β(n1:k, δ/2K)

}

Putting these pieces together, we find that with high probability

e(f, ĥk) ≤ α

k
∑

i=1

(

ni

n1:k

)

ǫi + 2αβ(n1:k, δ/2K) + α min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

e(fi, h)

}

≤ α

k
∑

i=1

(

ni

n1:k

)

ǫi + 2αβ(n1:k, δ/2K)

+ α min
h∈H

{

k
∑

i=1

(

ni

n1:k

)

αe(fi, f) +

k
∑

i=1

(

ni

n1:k

)

αe(f, h)

}

= (α + α2)

k
∑

i=1

(

ni

n1:k

)

ǫi + 2αβ(n1:k, δ/2K) + α2 min
h∈H

{e(f, h)}
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Figure 1:Visual demonstration of Theorem 2. In this problem there areK = 100 classifiers, each defined by
2 parameters represented by a pointfi in the unit square, such that the expected disagreement rate between two
such classifiers equals theL1 distance between their parameters. (It is easy to create simple input distributions
and classifiers that generate exactly this geometry.) We chose the 100 parameter vectorsfi uniformly at random
from the unit square (the circles in the left panel). To generate varying pile sizes, we letni decrease with the
distance offi from a chosen “central” point at(0.75, 0.75) (marked “MAX DATA” in the left panel); the
resulting pile sizes for each model are shown in the bar plot in the right panel, where the origin(0, 0) is in the
near corner,(1, 1) in the far corner, and the pile sizes clearly peak near(0.75, 0.75). Given thesefi, ni and
the pairwise distances, the undirected graph on the left includes an edge betweenfi andfj if and only if the
data fromfj is used to learnfi and/or the converse when Theorem 2 is used to optimize the distance of the
data used. The graph simultaneously displays the geometry implicit in Theorem 2 as well as its adaptivity to
local circumstances. Near the central point the graph is quite sparse and the edges quite short, corresponding
to the fact that for such models we have enough direct data that it is not advantageous to include data from
distant models. Far from the central point the graph becomes dense and the edges long, as we are required to
aggregate a larger neighborhood to learn the optimal model. In addition, decisions are affected locally by how
many models are “nearby” a given model.

4 Applications to standard learning settings

In this section we demonstrate the applicability of the general theory given by Theorem 1 to several
standard learning settings. We begin with the most straightforward application, classification.

4.1 Binary classification

In binary classification, we assume that our target model is afixed, unknown and arbitrary function
f from some input setX to {0, 1}, and that there is a fixed and unknown distributionP over theX .
Note that the distributionP over input does not depend on the target functionf . The observations are
of the formz = 〈x, y〉 wherey ∈ {0, 1}. The loss functionL(h, 〈x, y〉) is defined as0 if y = h(x)
and1 otherwise, and the corresponding expected loss ise(g1, g2) = E〈x,y〉∼Pg1

[L(g2, 〈x, y〉)] =

Prx∼P [g1(x) 6= g2(x)]. For 0/1 loss it is well-known and easy to see that the (standard) 1-triangle
inequality holds, and classical VC theory [6] provides us with uniform convergence. The conditions
of Theorem 1 are thus easily satisfied, yielding the following.

Theorem 2 Let F be the set of all functions from an input setX into {0,1} and letd be the VC
dimension ofH ⊆ F . Let e be the expected 0/1 loss. LetK ∈ N, f = f1, f2, . . . , fK ∈ F ,
{ǫi}

K
i=1, {ni}

K
i=1, and ĥk be as defined above in the multi-source learning model. For any δ such

that0 < δ < 1, with probability at least1− δ, for anyk ∈ {1, . . . ,K}

e(f, ĥk) ≤ 2

k
∑

i=1

(

ni

n1:k

)

ǫi + min
h∈H

{e(f, h)}+ 2

√

d log (2en1:k/d) + log (16K/δ)

8n1:k

In Figure 1 we provide a visual demonstration of the behaviorof Theorem 1 applied to a simple
classification problem.



4.2 Regression

We now turn to regression with squared loss. Here our target modelf is any function from an input
classX into some bounded subset ofR. (Frequently we will haveX ⊆ R

d, but this is not required.)
We again assume a fixed but unknown distributionP (that does not depend onf ) on the inputs. Our
observations are of the formz = 〈x, y〉. Our loss function isL(h, 〈x, y〉) = (y − h(x))2, and the
expected loss is thuse(g1, g2) = E〈x,y〉∼Pg1

[L(g2, 〈x, y〉)] = Ex∼P

[

(g1(x)− g2(x))2
]

.

For regression it is known that the standard 1-triangle inequality does not hold. However, a 2-triangle
inequality does hold and is stated in the following lemma. The proof is given in Appendix A.3

Lemma 1 Given any three functionsg1, g2, g3 : X → R, a fixed and unknown distributionP on
the inputsX , and the expected losse(g1, g2) = Ex∼P

[

(g1(x)− g2(x))2
]

,

e(g1, g2) ≤ 2 (e(g1, g3) + e(g3, g1)) .

The other required ingredient is a uniform convergence bound for regression with squared loss.
There is a rich literature on such bounds and their corresponding complexity measures for the model
classH, including the fat-shattering generalization of VC dimension [7], ǫ-nets and entropy [6] and
the combinatorial and pseudo-dimension approaches beautifully surveyed in [5]. For concreteness
here we adopt the latter approach, since it serves well in thefollowing section on density estimation.

While a detailed exposition of the pseudo-dimensiondim(H) of a classH of real-valued functions
exceeds both our space limitations and scope, it suffices to say that it generalizes the VC dimension
for binary functions and plays a similar role in uniform convergence bounds. More precisely, in the
same way that the VC dimension measures the largest set of points on which a set of classifiers can
exhibit “arbitrary” behavior (by achieving all possible labelings of the points),dim(H) measures
the largest set of points on which the output values induced by H are “full” or “space-filling.”
(Technically we ask whether{〈h(x1), . . . , h(xd)〉 : h ∈ H} intersects all orthants ofRd with
respect to some chosen origin.) Ignoring constant and logarithmic factors, uniform convergence
bounds can be derived in which the complexity penalty is

√

dim(H)/n. As with the VC dimension,
dim(H) is ordinarily closely related to the number of free parameters definingH. Thus for linear
functions inR

d it is O(d) and for neural networks withW weights it isO(W ), and so on.

Careful application of pseudo-dimension results from [5] along with Lemma 1 and Theorem 1 yields
the following. A sketch of the proof appears in Appendix A.

Theorem 3 LetF be the set of functions fromX into [−B,B] and letd be the pseudo-dimension of
H ⊆ F under squared loss. Lete be the expected squared loss. LetK ∈ N, f = f1, f2, . . . , fK ∈

F , {ǫi}
K
i=1, {ni}

K
i=1, and ĥk be as defined in the multi-source learning model. Assume thatn1 ≥

d/16e. For anyδ such that0 < δ < 1, with probability at least1− δ, for anyk ∈ {1, . . . ,K}

e(f, ĥk) ≤ 6

k
∑

i=1

(

ni

n1:k

)

ǫi +4 min
h∈H

{e(f, h)}+128B2





√

d

n1:k
+

√

ln(16K/δ)

n1:k





(
√

ln
16e2n1:k

d

)

4.3 Density estimation

We turn to the more complex application to density estimation. Here our models are no longer func-
tions, but densitiesP . The loss function for an observationx is the log lossL(P, x) = log (1/P (x)).
The expected loss is thene(P1, P2) = Ex∼P1

[L(P2, x)] = Ex∼P1
[log(1/P2(x))].

As we are not aware of anα-triangle inequality that holds simultaneously for all density func-
tions, we provide general mathematical tools to derive specializedα-triangle inequalities for specific
classes of distributions. We focus on the exponential family of distributions, which is quite general
and has nice properties which allow us to derive the necessary machinery to apply Theorem 1. We
start by defining the exponential family and explaining someof its properties. We proceed by de-
riving anα-triangle inequality for Kullback-Liebler divergence in exponential families that implies

3A version of this paper with the appendix included can be found on the authors’ websites.



anα-triangle inequality for our expected loss function. This inequality and a uniform convergence
bound based on pseudo-dimension yield a general method for deriving error bounds in the multiple
source setting which we illustrate using the example of multinomial distributions.

Let x ∈ X be a random variable, in either a continuous space (e.g.X ⊆ R
d) or a discrete space

(e.g.X ⊆ Z
d). We define the exponential family of distributions in termsof the following compo-

nents. First, we have a vector function of thesufficient statisticsneeded to compute the distribution,
denotedΨ : R

d → R
d′

. Associated withΨ is a vector ofexpectation parametersµ ∈ R
d′

which pa-
rameterizes a particular distribution. Next we have a convex vector functionF : R

d′

→ R (defined
below) which is unique for each family of exponential distributions, and a normalization function
P0(x). Using this notation we define a probability distribution (in the expectation parameters) to be

PF (x |µ) = e∇F (µ)·(Ψ(x)−µ)+F (µ)P0(x) . (1)

For all distributions we consider it will hold thatEx∼PF (·|µ) [Ψ(x)] = µ. Using this fact and the lin-
earity of expectation, we can derive the Kullback-Liebler (KL) divergence between two distributions
of the same family (which use the same functionsF andΨ) and obtain

KL (PF (x |µ1) ‖ PF (x |µ2)) = F (µ1)− [F (µ2) +∇F (µ2) · (µ1 − µ2)] . (2)

We define the quantity on the right to be theBregman divergencebetween the two (parameter) vec-
torsµ1 andµ2, denoted BF (µ1 ‖ µ2). The Bregman divergence measures the difference between
F and its first-order Taylor expansion aboutµ2 evaluated atµ1. Eq. (2) states that the KL divergence
between two members of the exponential family is equal to theBregman divergence between the two
corresponding expectation parameters. We refer the readerto [8] for more details about Bregman
divergences and to [9] for more information about exponential families.

We will use the above relation between the KL divergence for exponential families and Bregman
divergences to derive a triangle inequality as required by our theory. The following lemma shows
that if we can provide a triangle inequality for the KL function, we can do so for expected log loss.

Lemma 2 Let e be the expected log loss, i.e.e(P1, P2) = Ex∼P1
[log(1/P2(x))]. For any three

probability distributionsP1, P2, andP3, if KL (P1 ‖ P2) ≤ α(KL (P1 ‖ P3) + KL (P3 ‖ P2)) for
someα ≥ 1 thene(P1, P2) ≤ α(e(P1, P3) + e(P3, P2)).

The proof is given in Appendix B. The next lemma gives an approximate triangle inequality for the
KL divergence. We assume that there exists a closed setP = {µ} which contains all the parameter
vectors. The proof (again see Appendix B) uses Taylor’s Theorem to derive upper and lower bounds
on the Bregman divergence and then uses Eq. (2) to relate these bounds to the KL divergence.

Lemma 3 Let P1, P2, andP3 be distributions from an exponential family with parameters µ and
functionF . Then

KL (P1 ‖ P2) ≤ α (KL (P1 ‖ P3) + KL (P3 ‖ P2))

whereα = 2 supξ∈P λ1(H(F (ξ)))/ infξ∈P λd′(H(F (ξ))). Hereλ1(·) andλd′(·) are the highest
and lowest eigenvalues of a given matrix, andH(·) is the Hessian matrix.

The following theorem, which states bounds for multinomialdistributions in the multi-source set-
ting, is provided to illustrate the type of results that can be obtained using the machinery described in
this section. More details on the application to the multinomial distribution are given in Appendix B.

Theorem 4 LetF ≡ H be the set of multinomial distributions overN values with the probability
of each value bounded from below byγ for someγ > 0, and letα = 2/γ. Let d be the pseudo-
dimension ofH under log loss, and lete be the expected log loss. LetK ∈ N, f = f1, f2, . . . , fK ∈

F , {ǫi}
K
i=1, 4 {n}K

i=1, andĥk be as defined above in the multi-source learning model. Assume that
n1 ≥ d/16e. For any0 < δ < 1, with probability at least1− δ for anyk ∈ {1, . . . ,K},

e(f, ĥk) ≤ (α + α2)
k
∑

i=1

(

ni

n1:k

)

ǫi + α min
h∈H

{e(f, h)}

4Here we can actually make the weaker assumption that theǫi bound the KL divergences rather than the
expected log loss, which avoids our needing upper bounds on the entropy of each source distribution.
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√

d
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√
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(
√
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16e2n1:k
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5 Data-dependent bounds

Given the interest in data-dependent convergence methods (such as maximum margin, PAC-Bayes,
and others) in recent years, it is natural to ask how our multi-source theory can exploit these modern
bounds. We examine one specific case for classification here using Rademacher complexity [10, 11];
analogs can be derived in a similar manner for other learningproblems.

If H is a class of functions mapping from a setX to R, we define theempirical Rademacher com-
plexityof H on a fixed set of observationsx1, . . . , xn as

R̂n(H) = E

[

sup
h∈H

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σih(xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1, . . . , xn

]

where the expectation is taken over independent uniform{±1}-valued random variablesσ1, . . . , σn.

The Rademacher complexity forn observations is then defined asRn(H) = E
[

R̂n(H)
]

where the

expectation is overx1, . . . , xn.

We can apply Rademacher-based convergence bounds to obtaina data-dependent multi-source
bound for classification. A proof sketch using techniques and theorems of [10] is in Appendix C.

Theorem 5 LetF be the set of all functions from an input setX into {-1,1} and letR̂n1:k
be the

empirical Rademacher complexity ofH ⊆ F on the firstk piles of data. Lete be the expected 0/1
loss. LetK ∈ N, f = f1, f2, . . . , fK ∈ F , {ǫi}

K
i=1, {ni}

K
i=1, and ĥk be as defined in the multi-

source learning model. Assume thatn1 ≥ d/16e. For anyδ such that0 < δ < 1, with probability
at least1− δ, for anyk ∈ {1, . . . ,K}

e(f, ĥk) ≤ 2

k
∑

i=1

(

ni

n1:k

)

ǫi + min
h∈H

{e(f, h)}+ R̂n1:k
(H) + 4

√

2 ln(4K/δ)

n1:k

While the use of data-dependent complexity measures can be expected to yield more accurate bounds
and thus better decisions about the numberk∗ of piles to use, it is not without its costs in comparison
to the more standard data-independent approaches. In particular, in principle the optimization of
the bound of Theorem 5 to choosek∗ may actually involve running the learning algorithm on all
possible prefixes of the piles, since we cannot know the data-dependent complexity term for each
prefix without doing so. In contrast, the data-independent bounds can be computed and optimized
for k∗ without examining the data at all, and the learning performed only once on the firstk∗ piles.
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