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Abstract

We demonstrate the first fully hardware implementation of retinotopic
self-organization, from photon transduction to neural map formation.
A silicon retina transduces patterned illumination into correlated spike
trains that drive a population of silicon growth cones to automatically
wire a topographic mapping by migrating toward sources of a diffusible
guidance cue that is released by postsynaptic spikes. We varied the pat-
tern of illumination to steer growth cones projected by different retinal
ganglion cell types to self-organize segregated or coordinated retinotopic
maps.

1 Introduction

Engineers have long admired the brain’s ability to effortlessly adapt to novel situations
without instruction, and sought to endow digital computers with a similar capacity for un-
supervised self-organization. One prominent example is Kohonen’s self-organizing map
[1], which achieved popularity by distilling neurophysiological insights into a simple set
of mathematical equations. Although these algorithms are readily simulated in software,
previous hardware implementations have required high precision components that are ex-
pensive in chip area (e.g. [2, 3]). By contrast, neurobiological systems can self-organize
components possessing remarkably heterogeneous properties. To pursue this biological ro-
bustness against component mismatch, we designed circuits that mimic neurophysiological
function down to the subcellular level. In this paper, we demonstrate topographic refine-
ment of connections between a silicon retina and the first neuromorphic self-organizing
map chip, previously reported in [5], which is based on axon migration in the developing
brain.

During development, neurons wire themselves into their mature circuits by extending ax-
onal and dendritic precursors called neurites. Each neurite is tipped by a motile sensory
structure called a growth cone that guides the elongating neurite based on local chemi-
cal cues. Growth cones move by continually sprouting and retracting finger-like exten-
sions called filopodia whose dynamics can be biased by diffusible ligands in an activity-
dependent manner [4]. Based on these observations, we designed and fabricated the Neu-
rotrope1 chip to implement a population of silicon growth cones [5]. We interfaced Neu-

∗www.neuroengineering.upenn.edu/boahen



x

n(x)

c(a)

a

s
o
u
rc
e

ta
rg
e
t

a b c d

Figure 1: Neurotropic axon guidance. a. Active source cells (grey) relay spikes down
their axons to their growth cones, which excite nearby target cells. b. Active target cell
bodies secrete neurotropin. c. Neurotropin spreads laterally, establishing a spatial concen-
tration gradient that is sampled by active growth cones. d. Active growth cones climb the
local neurotropin gradient, translating temporal activity coincidence into spatial position
coincidence. Growth cones move by displacing other growth cones.

rotrope1 directly to a spiking silicon retina to illustrate its applicability to larger neuromor-
phic systems.

This paper is organized as follows. In Section 2, we present an algorithm for axon mi-
gration under the guidance of a diffusible chemical whose release and uptake is gated by
activity. In Section 3, we describe our hardware implementation of this algorithm. In Sec-
tion 4, we examine the Neurotrope1 system’s performance on a topographic refinement
task when driven by spike trains generated by a silicon retina in response to several types
of illumination stimuli.

2 Neurotropic axon guidance

We model the self-organization of connections between two layers of neurons (Fig. 1).
Cells in the source layer innervate cells in the target layer with excitatory axons that are
tipped by motile growth cones. Growth cones tow their axons within the target layer as
directed by a diffusible guidance factor called neurotropin that they bind from the local
extracellular environment. Neurotropin is released by postsynaptically active target cell
bodies and bound by presynaptically active growth cones, so the retrograde transfer of
neurotropin from a target cell to a source cell measures the temporal coincidence of their
spike activities. Growth cones move to maximize their neurotropic uptake, a Hebbian-like
learning rule that causes cells that fire at the same time to wire to the same place. To
prevent the population of growth cones from attempting to trivially maximize their uptake
by all exciting the same target cell, we impose a synaptic density constraint that requires a
migrating growth cone to displace any other growth cone occupying its path.

To state the model more formally, source cell bodies occupy nodes of a regular two-
dimensional (2D) lattice embedded in the source layer, while growth cones and target cell
bodies occupy nodes on separate 2D lattices that are interleaved in the target layer. We in-
dex nodes by their positions in their respective layers, using Greek letters for source layer
positions (e.g., α ∈ Z2) and Roman letters for target layer positions (e.g., x, c ∈ Z2).

Each source cell α fires spikes at a rate aSC(α) and conveys this presynaptic activity down
an axon that elaborates an excitatory arbor in the target layer centered on c(α). In principle,
every branch of this arbor is tipped by its own motile growth cone, but to facilitate efficient
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Figure 2: a. Neurotrope1 system. Spike communication is by address-events (AER). b.
Neurotrope1 cell mosaic. The extracellular medium (grey) is laid out as a monolithic hon-
eycomb lattice. Growth cones (GC) occupy nodes of this lattice and extend filopodia to the
adjacent nodes. Neurotropin receptors (black) are located at the tip of each filopodium and
at the growth cone body. Target cells (N) occupy nodes of an interleaved triangular lattice.
c. Detail of chip layout.

hardware implementation, we abstract the collection of branch growth cones into a single
central growth cone that tows the arbor’s trunk around the target layer, dragging the rest of
the arbor with it. The arbor overlaps nearby target cells with a branch density A(x− c(α))
that diminishes with distance ‖x − c(α)‖ from the arbor center. The postsynaptic activity
aTC(x) of target cell x is proportional to the linear sum of its excitation.

aTC(x) =
∑

α

aSC(α)A(x − c(α)) (1)

Postsynaptically active target cell bodies release neurotropin, which spreads laterally until
consumed by constitutive decay processes. The neurotropin n(x′) present at target site
x′ is assembled from contributions from all active release sites. The contribution of each
target cell x is proportional to its postsynaptic activity and weighted by a spreading kernel
N (x− x′) that is a decreasing function of its distance ‖x− x′‖ from the measurement site
x′.

n(x′) =
∑

x

aTC(x)N (x − x′) (2)

A presynaptically active growth cone located at c(α) computes the direction of the local
neurotropin gradient by identifying the adjacent lattice node c′(α) ∈ C(c(α)) with the most
neurotropin, where C(c(α)) includes c(α) and its nearest neighbors.

c′(α) = arg maxx′∈C(c(α))n(x′) (3)

Once the growth cone has identified c′(α), it swaps positions with the growth cone al-
ready located at c′(α), increasing its own neurotropic uptake while preserving a con-
stant synaptic density. Growth cones compute position updates independently, at a rate
λ(α) ∝ aSC(α) maxy∈C(c(α)) n(x′). Updates are executed asynchronously, in order of
their arrival.

Software simulation of a similar set of equations generates self-organized feature maps
when driven by appropriately correlated source cell activity [6]. Here, we illustrate to-
pographic map formation in hardware using correlated spike trains generated by a silicon
retina.
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Figure 3: Virtual axon remapping. a. Cell bodies tag their spikes with their own source
layer addresses, which the forward lookup table translates into target layer destinations.
b. Axon updates are computed by growth cones, which decode their own target layer
addresses through the reverse lookup table to obtain the source layer addresses of their cell
bodies that identify their entries in the forward lookup table. c. Growth cones move by
modifying their entries in the forward and reverse lookup tables to reroute their spikes to
updated locations.

3 Neurotrope1 system

Our hardware implementation splits the model into three stages: the source layer, the target
layer, and the intervening axons (Fig. 2a). Any population of spiking neurons can act
as a source layer; in this paper we employ the silicon retina of [7]. The target layer is
implemented by a full custom VLSI chip that interleaves a 48 × 20 array of growth cone
circuits with a 24 × 20 array of target cell circuits. There is also a spreading network
that represents the intervening medium for propagating neurotropin. The Neurotrope1 chip
was fabricated by MOSIS using the TSMC 0.35µm process and has an area of 11.5 mm2 .
Connections are specified as entries in a pair of lookup tables, stored in an off-chip RAM,
that are updated by a Ubicom ip2022 microcontroller as instructed by the Neurotrope1 chip.
The ip2022 also controls a USB link that allows a computer to write and read the contents
of the RAM. Subsection 3.1 explains how updates are computed by the Neurotrope1 chip
and Subsection 3.2 describes the procedure for executing these updates.

3.1 Axon updates

Axon updates are computed by the Neurotrope1 chip using the transistor circuits described
in [5]. Here, we provide a brief description. The Neurotrope1 chip represents neurotropin
as charge spreading through a monolithic transistor channel laid out as a honeycomb lat-
tice. Each growth cone occupies one node of this lattice and extends filopodia to the three
adjacent nodes, expressing neurotropin receptors at all four locations (Fig. 2b-c). When
a growth cone receives a presynaptic spike, its receptor circuits tap charge from all four
nodes onto separate capacitors. The first capacitor voltage to integrate to a threshold resets
all of the growth cone’s capacitors and transmits a request off-chip to update the growth
cone’s position by swapping locations with the growth cone currently occupying the win-
ning node.

3.2 Address-event remapping

Chips in the Neurotrope1 system exchange spikes encoded in the address-event represen-
tation (AER) [8], an asynchronous communication protocol that merges spike trains from
every cell on the same chip onto a single shared data link instead of requiring a dedicated
wire for each connection. Each spike is tagged with the address of its originating cell for
transmission off-chip. Between chips, spikes are routed through a forward lookup table
that translates their original source layer addresses into their destined target layer addresses
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Figure 4: Retinotopic self-organization of ON-center RGCs. a. Silicon retina color map
of ON-center RGC body positions. A representative RGC body is outlined in white, as
are the RGC neighbors that participate in its topographic order parameter Φ(n). b. Target
layer color map of growth cone positions for sample n = 0, colored by the retinal positions
of their cell bodies. Growth cones projected by the representative RGC and its nearest
neighbors are outlined in white. Grey lines denote target layer distances used to compute
Φ(n). c. Target layer color map at n = 85. d. Order parameter evolution.

on the receiving chip (Fig. 3a). An axon entry in this forward lookup table is indexed by
the source layer address of its cell body and contains the target layer address of its growth
cone. The virtual axon moves by updating this entry.

Axon updates are computed by growth cone circuits on the Neurotrope1 chip, encoded as
address-events, and sent to the ip2022 for processing. Each update identifies a pair of axon
terminals to be swapped. These growth cone addresses are translated through a reverse
lookup table into the source layer addresses that index the relevant forward lookup table
entries (Fig. 3b). Modification of the affected entries in each lookup table completes the
axon migration (Fig. 3c).

4 Retinotopic self-organization

We programmed the growth cone population to self-organize retinotopic maps by driving
them with correlated spike trains generated by the silicon retina. The silicon retina trans-
lates patterned illumination in real-time into spike trains that are fed into the Neurotrope1
chip as presynaptic input from different retinal ganglion cell (RGC) types. An ON-center
RGC is excited by a spot of light in the center of its receptive field and inhibited by light in
the surrounding annulus, while an OFF-center RGC responds analogously to the absence
of light. There is an ON-center and an OFF-center RGC located at every retinal coordinate.

To generate appropriately correlated RGC spike trains, we illuminated the silicon retina
with various mixtures of light and dark spot stimuli. Each spot stimulus was presented
against a uniformly grey background for 100 ms and covered a contiguous cluster of RGCs
centered on a pseudorandomly selected position in the retinal plane, eliciting overlapping
bursts of spikes whose coactivity established a spatially restricted presynaptic correlation
kernel containing enough information to instruct topographic ordering [9]. Strongly driven
RGCs could fire at nearly 1 kHz, which was the highest mean rate at which the silicon retina
could still be tuned to roughly balance ON- and OFF-center RGC excitability. We tracked
the evolution of the growth cone population by reading out the contents of the lookup table
every five minutes, a sampling interval selected to include enough patch stimuli to allow
each of the 48 × 20 possible patches to be activated on average at least once per sample.

We first induced retinotopic self-organization within a single RGC cell type by illuminat-
ing the silicon retina with a sequence of randomly centered spots of light presented against
a grey background, selectively activating only ON-center RGCs. Each of the 960 growth
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Figure 5: Segregation by cell type under separate light and dark spot stimulation. Top:
ON-center; bottom: OFF-center. a. Silicon retina image of representative spot stimulus.
Light or dark intensity denotes relative ON- or OFF-center RGC output rate. b. Spike rates
for ON-center (grey) and OFF-center (black) RGCs in column x of a cross-section of a
representative spot stimulus. c. Target layer color maps of RGC growth cones at sample
n = 0. Black indicates the absence of a growth cone projected by an RGC of this cell type.
Other colors as in Fig. 4. d. Target layer color maps at n = 310. e. Order parameter
evolution for ON-center (grey) and OFF-center (black) RGCs.

cones was randomly assigned to a different ON-center RGC, creating a scrambled map
from retina to target layer (Fig. 4a-b). The ON-center RGC growth cone population visibly
refined the topography of the nonretinotopic initial state (Fig. 4c). We quantify this ob-
servation by introducing an order parameter Φ(n) whose value measures the instantaneous
retinotopy for an RGC at the nth sample. The definition of retinotopy is that adjacent RGCs
innervate adjacent target cells, so we define Φ(n) for a given RGC to be the average target
layer distance separating its growth cone from the growth cones projected by the six adja-
cent RGCs of the same cell type. The population average 〈Φ(n)〉 converges to a value that
represents the achievable performance on this task (Fig. 4d).

We next induced growth cones projected by each cell type to self-organize disjoint topo-
graphic maps by illuminating the silicon retina with a sequence of randomly centered light
or dark spots presented against a grey background (Fig. 5a-b). Half the growth cones
were assigned to ON-center RGCs and the other half were assigned to the corresponding
OFF-center RGCs. We seeded the system with a random projection that evenly distributed
growth cones of both cell types across the entire target layer (Fig. 5c). Since only RGCs of
the same cell type were coactive, growth cones segregated into ON- and OFF-center clus-
ters on opposite sides of the target layer (Fig. 5d). OFF-center RGCs were slightly more
excitable on average than ON-center RGCs, so their growth cones refined their topography
more quickly (Fig. 5e) and clustered in the right half of the target layer, which was also
more excitable due to poor power distribution on the Neurotrope1 chip.

Finally, we induced growth cones of both cell types to self-organize coordinated retino-
topic maps by illuminating the retina with center-surround stimuli that oscillate radially
from light to dark or vice versa (Fig. 6). The light-dark oscillation injected enough coac-
tivity between neighboring ON- and OFF-center RGCs to prevent their growth cones from
segregating by cell type into disjoint clusters. Instead, both subpopulations developed and
maintained coarse retinotopic maps that cover the entire target layer and are oriented in
register with one another, properties sufficient to seed more interesting circuits such as
oriented receptive fields [10].

Performance in this hardware implementation is limited mainly by variability in the behav-
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Figure 6: Coordinated retinotopy under center-surround stimulation. Top: ON-center; bot-
tom: OFF-center. a. Silicon retina image of a representative center-surround stimulus.
Light or dark intensity denotes relative ON- or OFF-center RGC output rate. b. Spike rates
for ON-center (grey) and OFF-center (black) RGCs in column x of a cross-section of a
representative center-surround stimulus. c. Target layer color maps of RGC growth cones
for sample n = 0. Colors as in Fig. 5. d. Target layer color maps at n = 335. e. Order
parameter evolution for ON-center (grey) and OFF-center (black) RGCs.

ior of nominally identical circuits on the Neurotrope1 chip and the silicon retina. In the
silicon retina, the wide variance of the RGC output rates [7] limits both the convergence
speed and the final topographic level achieved by the spot-driven growth cone population.
Growth cones move faster when stimulated at higher rates, but elevating the mean output
rate of the RGC population allows more excitable RGCs to fire spontaneously at a sus-
tained rate, swamping growth cone-specific guidance signals with stimulus-independent
postsynaptic activity that globally attracts all growth cones. The mean RGC output rate
must remain low enough to suppress these spontaneous distractors, limiting convergence
speed. Variance in the output rates of neighboring RGCs also distorts the shape of the spot
stimulus, eroding the fidelity of the correlation-encoded instructions received by the growth
cones.

Variability in the Neurotrope1 chip further limits topographic convergence. Migrating
growth cones are directed by the local neurotropin landscape, which forms an image of
recent presynaptic activity correlations as filtered through the postsynaptic activation of
the target cell population. This image is distorted by variations between the properties of
individual target cell and neurotropin circuits that are introduced during fabrication. In
particular, poor power distribution on the Neurotrope1 chip creates a systematic gradient
in target cell excitability that warps a growth cone’s impression of the relative coactivity of
its neighbors, attracting it preferentially toward the more excitable target cells on the right
side of the array.

5 Conclusions

In this paper, we demonstrated a completely neuromorphic implementation of retinotopic
self-organization. This is the first time every stage of the process has been implemented
entirely in hardware, from photon transduction through neural map formation. The only
comparable system was described in [11], which processed silicon retina data offline using
a software model of neurotrophic guidance running on a workstation. Our system computes
results in real time at low power, two prerequisites for autonomous mobile applications.

The novel infrastructure developed to implement virtual axon migration allows silicon
growth cones to directly interface with an existing family of AER-compliant devices,



enabling a host of multimodal neuromorphic self-organizing applications. In particular,
the silicon retina’s ability to translate arbitrary visual stimuli into growth cone-compatible
spike trains in real-time opens the door to more ambitious experiments such as using natural
video correlations to automatically wire more complicated visual feature maps.

Our faithful adherence to cellular level details yields an algorithm that is well suited to
physical implementation. In contrast to all previous self-organizing map chips (e.g. [2, 3]),
which implemented a global winner-take-all function to induce competition, our silicon
growth cones compute their own updates using purely local information about the neu-
rotropin gradient, a cellular approach that scales effortlessly to larger populations. Perfor-
mance might be improved by supplementing our purely morphogenetic model with addi-
tional physiologically-inspired mechanisms to prune outliers and consolidate well-placed
growth cones into permanent synapses.
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