
Q-Clustering

Mukund Narasimhan† Nebojsa Jojic‡ Jeff Bilmes†
†Dept of Electrical Engineering, University of Washington, Seattle WA

‡Microsoft Research, Microsoft Corporation, Redmond WA
{mukundn,bilmes}@ee.washington.edu andjojic@microsoft.com

Abstract

We show that Queyranne’s algorithm for minimizing symmetric submod-
ular functions can be used for clustering with a variety of different objec-
tive functions. Two specific criteria that we consider in this paper are the
single linkage and the minimum description length criteria. The first cri-
terion tries to maximize the minimum distance between elements of dif-
ferent clusters, and is inherently “discriminative”. It is known that opti-
mal clusterings intok clusters for any givenk in polynomial time for this
criterion can be computed. The second criterion seeks to minimize the
description length of the clusters given a probabilistic generative model.
We show that the optimal partitioning into 2 clusters, and approximate
partitioning (guaranteed to be within a factor of 2 of the the optimal) for
more clusters can be computed. To the best of our knowledge, this is
the first time that a tractable algorithm for finding the optimal clustering
with respect to the MDL criterion for 2 clusters has been given. Besides
the optimality result for the MDL criterion, the chief contribution of this
paper is to show that thesame algorithmcan be used to optimize a broad
class of criteria, and hence can be used for many application specific
criterion for which efficient algorithm are not known.

1 Introduction
The clustering of data is a problem found in many pattern recognition tasks, often in the
guises of unsupervised learning, vector quantization, dimensionality reduction, etc. For-
mally, the clustering problem can be described as follows. Given a finite setS, and a crite-
rion functionJk defined on all partitions ofS into k parts, find a partition ofS into k parts
{S1, S2, . . . , Sk} so thatJk ({S1, S2, . . . , Sk}) is maximized. The number ofk-clusters
for a sizen > k data set is roughlykn/k! [5] so exhaustive search is not an efficient solu-
tion. The problem, in fact, is NP-complete for most desirable measures. Broadly speaking
there are two classes of criteria for clustering. There are distance based criteria, for which
a distance measure is specified between each pair of elements, and the criterion somehow
combines either intercluster or intracluster distances into an objective function. The other
class of criteria are model based, and for these, a probabilistic (generative) model is spec-
ified. There is no universally accepted criterion for clustering. The appropriate criterion is
typically application dependent, and therefore, we do not claim that the two criteria con-
sidered in this paper are inherently better or more generally applicable than other criteria.
However, we can show that for the single-linkage criterion, we can compute the optimal
clustering intok parts (for anyk), and for the MDL criterion, we can compute the optimal
clustering into 2 parts using Queyranne’s algorithm. More generally, any criterion from a

broad class of criterion can be solved by thesame algorithm, and this class of criteria is
closed under linear combinations. In addition to the theoretical elegance of a single algo-
rithm solving a number of very different criterion, this means that we can optimize (for
example) for the sum of single-linkage and MDL criterions (or positively scaled versions
thereof). The two criterion we consider are quite different. The first, “discriminative”,
criterion we consider is the single-linkage criterion. In this case, we are given distances
d(s1, s2) between all elementss1, s2 ∈ S, and we try and find clusters that maximize the
minimum distance between elements of different clusters (i.e., maximize the separation of
the clusters). This criterion has several advantages. Since we are only comparing distances,
the distance measure can be chosen from any ordered set (addition/squaring/multiplication
of distances need not be defined as is required for K-means, spectral clustering etc.). Fur-
ther, this criterion only depends on the rank ordering of the distances, and so is completely
insensitive to any monotone transformation of the distances. This gives a lot of flexibility
in constructing a distance measure appropriate for an application. For example, it is a very
natural candidate when the distance measure is derived from user studies (since users are
more likely to be able to provide rankings than exact distances). On the other hand, this
criterion is sensitive to outliers and may not be appropriate when there are a large number
of outliers in the data set. The kernel based criterion considered in [3] is similar in spirit
to this one. However, their algorithm only provides approximate solutions, and the exten-
sion to more than 2 clusters is not given. However, since they optimize the distance of the
clusters to a hyperplane, it is more appropriate if the clusters are to be classified using a
SVM.

The second criterion we consider is “generative” in nature and is based on the Minimum
Description Length principle. In this case we are given a (generative) probability model
for the elements, and we attempt to find clusters so that describing or encoding the clusters
(separately) can be done using as few bits as possible. This is also a very natural criterion -
grouping together data items that can be highly compressed translates to grouping elements
that share common characteristics. This criterion has also been widely used in the past,
though the algorithms given do not guarantee optimal solutions (even for 2 clusters).

Since these criteria seem quite different in nature, it is surprising that the same algorithm
can be used to find theoptimalpartitions into two clusters in both cases. The key principle
here is the notion of submodularity (and its variants) [1, 2]. We will show that the problem
of finding the optimal clusterings minimizing the description length is equivalent to the
problem of minimizing a symmetric submodular function, and the problem of maximizing
the cluster separation is equivalent to minimizing a symmetric function which, while not
submodular, is closely related, and can be minimized by the same algorithm.

2 Background and Notation

A clusteringof a finite setS is a partition{S1, S2, . . . , Sk} of S. We will call the in-
dividual elements of the partition the clusters of the partition. If there arek clusters in
the partition, then we say that the partition is ak-clustering. LetCk(S) be the set of all
k-clusterings for1 ≤ k ≤ |S|. For the first criterion, we assume we are given a function
d : S × S → R that represents the “distance” between objects. Intuitively, we expect that
d(s, t) is large when the objects are dissimilar. We will assume thatd(·, ·) is symmetric,
but make no further assumptions. In particular we do not assume thatd(·, ·) is a metric
(Later on in this paper, we will not even assume thatd(s, t) is a (real) number, but instead
will allow the range ofd to be a ordered set). The distance between setsT andR is
often defined to be the smallest distance between elements from these different clusters:
D(R, T) = minr∈R,t∈T d(r, t). The single-linkage criterion tries to maximize this dis-
tance, and hence an optimal 2-clustering is inarg max{S1,S2}∈C2(S) D(S1, S2). We let
Ok(S) be the set of all optimal k-clusterings for1 ≤ k ≤ |S| with respect toD(·, ·). It is
known that an algorithm based on the Minimum Spanning Tree can be used to find optimal

clusterings for the single-linkage criterion[8].

For the second criterion, we assumeS is a collection of random variables, and for any sub-
setT = {s1, s2, . . . , sm} of S, we letH(T) be the entropy of the set of random variables
{s1, s2, . . . , sm}. Now, the (expected) total cost of encoding or describing the setT is
H(T). So a partition{S1, S2} of S that minimizes the description length (DL) is in

argmin
{S1,S2}∈C2(S)

DL(S1, S2) = argmin
{S1,S2}∈C2(S)

H(S1) + H(S2)

We will denote by2S the set of all subsets ofS. A set functionf : 2S → R assigns
a (real) number to every subset ofS. We say thatf is submodularif f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) for everyA, B ⊆ S. f is symmetric iff(A) = f(S \ A). In
[1], Queyranne gives a polynomial time algorithm that finds a setA ∈ 2S \ {S, φ} that
minimizes any symmetric submodular set function (specified in the form of an oracle). That
is, Queyranne’s algorithm finds a non-trivial partition{S1, S \ S1} of S so thatf(S1) (=
f(S \S1)) minimizesf over all non-trivial subsets ofS. The problem of finding non-trivial
minimizers of a symmetric submodular function can be thought of a a generalization of the
graph-cut problem. For a symmetric set functionf , we can think off(S1) asf(S1, S \S1),
and if we can extendf to be defined on all pairs of disjoint subsets ofS, then Rizzi showed
in [2] that Queyranne’s algorithm works even whenf is not submodular, as long asf
is monotone and consistent, wheref is monotoneif for R, T, T ′ ⊆ S with T ′ ⊆ T and
R∩T = φ we havef(R, T ′) ≤ f(R, T) andf is consistentif f(A, W∪B) ≥ f(B, A∪W)
wheneverA, B, W ⊆ S are disjoint sets satisfyingf(A, W) ≥ f(B, W).

The rest of this paper is organized as follows. In Section 3, we show that Queyranne’s
algorithm can be used to find the optimalk-clustering (for anyk) in polynomial time for
the single-linkage criterion. In Section 4, we give an algorithm for finding the optimal
clustering into 2 parts that minimizes the description length. In Section 5, we present some
experimental results.

3 Single-Linkage: Maximizing the separation between clusters
In this section, we show that Queyranne’s algorithm can be used for findingk-clusters (for
any givenk) that maximize the separation between elements of different clusters. We do
this in two steps. First in Subsection 3.1, we show that Queyranne’s algorithm can partition
the setS into two parts to maximize the distance between these parts in polynomial time.
Then in Subsection 3.2, we show how this subroutine can be used to findoptimalk clusters,
also in polynomial time.

3.1 Optimal 2-clusterings
In this section, we will show that the function−D(·, ·) is monotone and consistent. There-
fore, by Rizzi’s result, it follows that we can find a 2-clustering{S1, S2} = {S1, S \ S1}
that minimizes−D(S1, S2), and hence maximizesD(S1, S2).

Lemma 1. If R ⊆ T , thenD(U, T) ≤ D(U, R) (and hence−D(U, R) ≤ −D(U, T)).

This would imply that−D is monotone. To see this, observe that

D(U, T) = min
u∈U,t∈T

d(u, t) = min

(

min
u∈U,r∈R

d(u, r), min
u∈U,t∈T\R

d(u, t)

)

≤ D(U, R)

Lemma 2. Suppose thatA, B, W are disjoint subsets ofS andD(A, W) ≤ D(B, W).
ThenD(A, W ∪ B) ≤ D(B, A ∪ W).

To see this first observe thatD(A, B ∪ W) = min(D(A, B), D(A, W)) because

D(A, W ∪ B) = min
a∈A,x∈W∪B

D(a, x) = min

(

min
a∈A,w∈W

D(a, w), min
a∈A,b∈B

D(A, b)

)

It follows thatD(A, B ∪ W) = min (D(A, B), D(A, W)) ≤ min (D(A, B), D(B, W))
= min (D(B, A), D(B, W)) = D(B, A ∪ W). Therefore, if−D(A, W) ≥ −D(B, W),
then−D(A, W ∪ B) ≥ −D(B, A ∪ W). Hence−D(·, ·) is consistent.

Therefore,−D(·, ·) is symmetric, monotone and consistent. Hence it can be minimized
using Queyranne’s algorithm [2]. Therefore, we have a procedure to compute optimal 2-
clusterings. We now extend this to compute optimalk-clusterings.

3.2 Optimal k-clusterings
We start off by extending our objective function fork-clusterings in the obvious way. The
function D(R, T) can be thought of as defining theseparationor margin between the
clustersR andT . We can generalize this notion to more than two clusters as follows. Let

seperation({S1, S2, . . . , Sk}) = min
i6=j

D(Si, Sj) = min
Si 6=Sj

si∈Si,sj∈Sj

d(si, sj)

Note thatseperation({R, T }) = D(R, T) for a 2-clustering. The functionseperation :

∪
|S|
k=1Ck(S) → R takes a single clustering as its argument. However,D(·, ·) takes two

disjoint subsets ofS as its arguments the union of which need not beS in general. The
margin is the distance between the closest elements of different clusters, and hence we will
be interested in findingk-clusters that maximize the margin. Therefore, we seek an element
in Ok(S) = arg max{S1,S2,...,Sk}∈Ck(S) seperation({S1, S2, . . . , Sk}). Let vk(S) be the
margin of an element inOk(S). Therefore,vk(S) is the best possible margin of anyk-
clustering ofS. An obvious approach to generating optimalk-clusterings given a method
of generating optimal 2-clusterings is the following. Start off with an optimal 2-clustering
{S1, S2}. Then apply the procedure to find 2-clusterings ofS1 andS2, and stop when you
have enough clusters. There are two potential problems with this approach. First, it is not
clear that an optimalk-clustering can be a refinement of an optimal 2-clustering. That is,
we need to be sure that there is an optimalk-clustering in whichS1 is the union of some
of the clusters, andS2 is the union of the remaining. Second, we need to figure out how
many of the clustersS1 is the union of and how manyS2 is the union of. In this section, we
will show that for anyk ≥ 3, there is always an optimalk-clustering that is a refinement
of any given optimal 2-clustering. A simple dynamic programming algorithm takes care of
the second potential problem.

We begin by establishing some relationships between the separation of clusterings of dif-
ferent sizes. To compare the separation of clusterings with different number of clus-
ters, we can try and merge two of the clusters from the clustering with more clus-
ters. Say thatS = {S1, S2, . . . , Sk} ∈ Ck(S) is any k-clustering ofS, andS′ is a
(k − 1)-clustering ofS obtained by merging two of the clusters (sayS1 andS2). Then
S′ = {S1 ∪ S2, S3, . . . , Sk} ∈ Ck−1(S).

Lemma 3. Suppose thatS = {S1, S2, . . . , Sk} ∈ Ck(S) and S′ =
{S1 ∪ S2, S3, . . . , Sk} ∈ Ck−1(S). Thenseperation(S) ≤ seperation(S′). In other words,
refining a partition can only reduce the margin.

Therefore, refining a clustering (i.e., splitting a cluster) can only reduce the separation. An
immediate corollary is the following.

Corollary 4. If Tl ∈ Cl(S) is a refinement ofTk ∈ Ck(S) (for k < l) thenseperation(Tl) ≤
seperation(Tk). It follows thatvk(S) ≥ vl(S) if 1 ≤ k < l ≤ n.

Proof. It suffices to prove the result fork = l − 1. The first assertion follows immediately
from Lemma 3. LetS ∈ Ol(S) be an optimall-clustering. Merge any two clusters to get
S′ ∈ Ck(S). By Lemma 3,vk(S) ≥ seperation(S′) ≥ seperation(S) = vl(S).

Next, we consider the question of constructing larger partitions (i.e., partitions with more
clusters) from smaller partitions. Given two clusteringsS = {S1, S2, . . . , Sk} ∈ Ck(S)
and T = {T1, T2, . . . , Tl} ∈ Cl(S) of S, we can create a new clusteringU =
{U1, U2, . . . , Um} ∈ Cm(S) to be their common refinement. That is, the clusters ofU
consist of those elements that are in the same clusters of bothS andT . Formally,

U = {Si ∩ Tj : 1 ≤ i ≤ k, 1 ≤ j ≤ l}

Lemma 5. LetS = {S1, S2, . . . , Sk} ∈ Ck(S) andT = {T1, T2, . . . , Tl} ∈ Cl(S) be any
two partitions. LetU = {U1, U2, . . . , Um} ∈ Cm(S) be their common refinement. Then
seperation(U) = min (seperation(S), seperation(T)).

Proof. It is clear thatseperation(U) ≤ min (seperation(S), seperation(T)). To show
equality, note that ifa, b are in different clusters ofU , thena, b must have been in dif-
ferent clusters of eitherS or T .

This result can be thought of as expressing a relationship betweenseperation and the lattice
of partitions ofS which will be important to our later robustness extension

Lemma 6. Suppose thatS = {S1, S2} ∈ O2(S) is an optimal 2-clustering. Then there is
always an optimalk-clustering that is a refinement ofS.
Proof. Suppose that this is not the case. IfT = {T1, T2, . . . , Tk} ∈ Ok(S) is an op-
timal k-clustering, letr be the number of clusters ofT that “do not respect” the par-
tition {S1, S2}. That is, r is the number of clusters ofT that intersect bothS1 and
S2 : r = |{1 ≤ i ≤ k : Ti ∩ S1 6= φ andTi ∩ S2 6= φ}|. Pick T ∈ Ok(S) to have the
smallestr. If r = 0, thenT is a refinement ofS and there is nothing to show. Other-
wise, r ≥ 1. Assume WLOG thatT (1)

1 = T1 ∩ S1 6= φ andT
(2)
1 = T1 ∩ S2 6= φ.

ThenT ′ =
{

T
(1)
1 , T

(2)
1 , T2, T3, . . . , Tk

}

∈ Ck+1(S) is a refinement ofT and satisfies

seperation(T ′) = seperation (T). This follows from Lemma 3 along with the fact that(1)
D(Ti, Tj) ≥ seperation(T) for any2 ≤ i < j ≤ k, (2) D(T

(i)
1 , Tj) ≥ seperation(T) for

any i ∈ {1, 2} and2 ≤ j ≤ k, (3) D(T
(1)
1 , T

(2)
1) ≥ seperation({S1, S2}) = v2(S) ≥

vk(S) = seperation(T).

Now, pick two clusters ofT ′ that are either both contained in the same cluster ofS or
both “do not respect”S. Clearly this can always be done. Merge these clusters together to
get an elementT ′′ ∈ Ck(S). By Lemma 3 merging clusters cannot decrease the margin.
Therefore,seperation(T ′′) = seperation(T ′) = seperation(T). However,T ′′ has fewer
clusters that do not respectS handT has, and hence we have a contradiction.

This lemma implies that Queyranne’s algorithm, along with a simple dynamic program-
ming algorithm can be used to find the bestk clustering with time complexityO(k |S|

3
).

Observe that in fact this problem can be solved in timeO(|S|2) ([8]). Even though using
Queyranne’s algorithm is not the fastest algorithm for this problem, the fact that it optimizes
this criterion implies that it can be used to optimize conic combinations of submodular cri-
teria and the single-linkage criterion.

3.3 Generating robust clusterings
One possible issue with the metric we defined is that it is very sensitive to outliers and
noise. To see this, note that if we have two very well separated clusters, then adding a
few points “between” the clusters could dramatically decrease the separation. To increase
the robustness of the algorithm, we can try to maximize then smallest distances instead
of maximizing just the smallest distance between clusters. If we give thenth smallest
distance more importance than the smallest distance, this increases the noise tolerance by

ignoring the effects of a few outliers. We will taken ∈ N to be some fixed positive
integer specified by the user. This will represent the desired degree of noise tolerance
(larger gives more noise tolerance). LetRn be the set of decreasingn-tuples of elements
in R ∪ {∞}. Given disjoint setsR, T ⊆ S, let D(R, T) be the element ofRn obtained
as follows. LetL(R, T) = 〈d1, d2, . . . , d|R|·|T |〉 be an ordered list of distances between
elements ofR andT arranged in decreasing order. So for example, ifR = {1, 2} and
T = {3, 4}, with d(r, t) = r · t, thenL(R, T) = 〈8, 6, 4, 3〉. We defineD(R, T) as
follows. If |R| · |T | ≥ n, thenD(R, T) is the last (and thus least)n elements ofL(R, T).
Otherwise, if|R| · |T | < n, then the firstn−|R| · |T | elements ofD(R, T) are∞, while the
remaining elements are the elements ofL(R, T). So for example, ifn = 2, thenD(R, T)
in the above example would be〈4, 3〉, if n = 3 thenD(R, T) = 〈6, 4, 3〉 and ifn = 6, then
D(R, T) = 〈∞,∞, 8, 6, 4, 3〉.

We define an operation⊕ onRn as follows. To get〈l1, l2, . . . , ln〉⊕〈r1, r2, . . . , rn〉, order
the elements of〈l1, l2, . . . , ln, r1, r2, . . . , rn〉 in decreasing order, and let〈s1, s2, . . . , sn〉
be the lastn elements. For example,〈∞, 3, 2〉 ⊕ 〈∞, 6, 5〉 = 〈5, 3, 2〉 and 〈4, 3, 1〉 ⊕
〈5, 4, 3〉 = 〈3, 3, 1〉. So, the⊕ operation picks off then smallest elements. It is
clear that this operation is commutative (symmetric), associative and that〈∞,∞, . . . ,∞〉
acts as an identity. Therefore,Rn forms a commutative semigroup. In fact, we can de-
scribeD(R, T) as follows. For any pair of distinct elementsr, t ∈ S, let d′(r, t) =
〈∞,∞, . . . , d(r, t)〉. Then D(R, T) =

⊕

r∈R,t∈T d′(r, t). Notice the similarity to
D(R, T) = minr∈R,t∈T d(r, t). In fact, if we taken = 1, then the⊕ operation reduces to
the minimum operation and we get back our original definitions. We can orderRn lexico-
graphically. Therefore,Rn becomes an ordered semigroup. It is entirely straightforward
to check that ifR ⊆ T , thenD(U, T) ≺ D(U, R), and that ifA, B, W are disjoint sets with
D(A, W) ≺ D(B, W), thenD(A, W ∪ B) ≺ D(B, A ∪ W). It is also straightforward
to extend Rizzi’s proof to see that Queyranne’s algorithm (with the obvious modifications)
will generate a 2-clustering that minimizes this metric. It can also be verified that the results
of Section 3.2 can be extended to this framework (also with the obvious modifications).

In our experiments, we observed that selecting the parametern is quite tricky. Now,
Queyranne’s algorithm actually produces a (Gomory-Hu) tree [1] whose edges represent
the cost of separating elements. In practice we noticed that restricting our search to only
edges whose deletion results in clusters of at least certain sizes produces very good results.
Other heuristics such as running the algorithm a number of times to eliminate outliers are
also reasonable approaches. Modifying the algorithm to yield good results while retaining
the theoretical guarantees is an open question.

4 MDL Clustering
We assume thatS is a collection of random variables for which we have a (generative)
probability model. Since we have the joint probabilities of all subsets of the random vari-
ables, the entropy of any collection of the variables is well defined. The expected coding
(or description) length of any collectionT of random variables using an optimal coding
scheme (or a random coding scheme) is known to beH(T). The partition{S1, S2} of S
that minimizes the coding length is thereforearg min{S1,S2}∈C2(S) H(S1) + H(S2). Now,

argmin
{S1,S2}∈C2(S)

H(S1) + H(S2) = argmin
{S1,S2}∈C2(S)

H(S1) + H(S2) − H(S)

= argmin
{S1,S2}∈C2(S)

I(S1; S2)

whereI(S1; S2) is the mutual information betweenS1 andS2 becauseS1 ∪ S2 = S for
all {S1, S2} ∈ C2(S), Therefore, the problem of partitioningS into two parts to mini-
mize the description length is equivalent to partitioningS into two parts to minimize the
mutual information between the parts. It is shown in [9] that the functionf : 2S → R

defined byf(T) = I(T ; S \ T) is symmetric and submodular. Clearly the minima of this
function correspond to partitions that minimize the mutual information between the parts.
Therefore, the problem of partitioning in order to minimize the mutual information between
the parts can be reduced to a symmetric submodular minimization problem, which can be
solved using Queyranne’s algorithm in timeO(|S|3) assuming oracle queries to a mutual
information oracle. While implementing such a mutual information oracle is not trivial, for
many realistic applications (including one we consider in this paper), the cost of computing
a mutual information query is bounded above by the size of the data set, and so the entire
algorithm is polynomial in the size of the data set. Symmetric submodular functions gener-
alize notions like graph-cuts, and indeed, Queyranne’s algorithm generalizes an algorithm
for computing graph-cuts. Since graph-cut based techniques are extensively used in many
engineering applications, it might be possible to develop criteria that are more appropriate
for these specific applications, while still retaining producing optimal partitions of size 2.

It should be noted that, in general, we cannot use the dynamic programming algorithm
to produce optimal clusterings withk > 2 clusters for the MDL criterion (or for general
symmetric submodular functions). The key reason is that we cannot prove the equivalent
of Lemma 6 for the MDL criterion. However, such an algorithm seems reasonable, and
it does produce reasonable results. Another approach (which is computationally cheaper)
is to computek clusters by deletingk − 1 edges of the Gomory-Hu tree produced by
Queyranne’s algorithm. It can be shown [9] that this will yield a factor 2 approximation
to the optimalk-clustering. More generally, if we have an arbitrary increasing submod-
ular function (such as entropy)f : 2S → R, and we seek a clustering{S1, S2, . . . , Sk}

to minimize the sum
∑k

i=1 f(Si), then we have an exact algorithm for 2-clusterings and
a factor 2 approximation guarantee. Therefore, this generalizes approximation guarantees
for graphk-cuts because for any graphG = (V, E), the functionf : 2V → R where
f(A) is the number of edges adjacent to the vertex setA is a submodular function. The
finding a clustering to minimize

∑k

i=1 f(Si) is equivalent to finding a partition of the ver-
tex set of sizek to minimize the number of edges disconnected (i.e., to the graphk-cut
problem). Another criterion which we can define similarly can be applied to clustering
genomic sequences. Intuitively, two genomes are more closely related if they share more
common subsequences. Therefore, a natural clustering criterion for sequences is to parti-
tion the sequences into clusters so that the sequences from different clusters share as few
subsequences as possible. This problem too can be solved using this generic framework.

5 Results
Table 1 compares Q-Clustering with various other algorithms. The left part of the table
shows the error rates (in percentages) of the (robust) single-linkage criterion and some
other techniques on the same data set as is reported in [3]. The data sets are images (of
digits and faces), and the distance function we used was the Euclidean distance between
the vector of the pixels in the images. The right part of the table compares the Q-Clustering
using MDL criterion with other state of the art algorithms for haplotype tagging of SNPs
(single nucleotide polymorphisms) in the ACE gene on the data set reported in [4]. In this
problem, the goal is to identify a set of SNPs that can accurately predict at least 90% of
the SNPs in ACE gene. Typically the SNPs are highly correlated, and so it is necessary to
cluster SNPs to identify the correlated SNPs. Note it is very important to identify as few
SNPs as possible because the number of clinical trials required grows exponentially with
the number of SNPs. As can be seen Q-Clustering does very well on this data set.

6 Conclusions
The maximum-separation (single-linkage) metric is a very natural “discriminative” crite-
rion, and it has several advantages, including insensitivity to any monotone transformation
of the distances. However, it is quite sensitive to outliers. The robust version does help

Robust Max-Separation (Single-Linkage) MDL

Error rate Error rate
on Digits on Faces

Q-Clustering 1.4 0
Max-Margin† 3 0

Spectral Clust.† 6 16.7
K-means† 7 24.4

#SNPs required
Q-Clustering 3
EigenSNP‡ 5

Sliding Window‡ 15
htStep (up)‡ 7

htStep (down)‡ 7

Table 1: Comparing (robust) max-separation and MDL Q-Clustering with other techniques.
Results marked by† and‡ are from [3] and [4] respectively.

a little, but it does require some additional knowledge (about the approximate number of
outliers) and considerable tuning. It is possible that we could develop additional heuristics
to automatically determine the parameters of the robust version. The MDL criterion is also
a very natural one, and the results on haplotype tagging are quite promising. The MDL cri-
terion can be seen as a generalization of graph cuts, and so it seems like Q-clustering can
also be applied to optimize other criteria arising in problems like image segmentation, es-
pecially when there is a generative model. Another natural criterion for clustering strings is
to partition the strings/sequences to minimize the number of common subsequences. This
could have interesting applications in genomics. The key novelty of this paper is the guar-
antees of optimality produced by the algorithm, and the generaly framework into which a
number of natural criterion fall.

7 Acknowledgments
The authors acknowledge the assistance of Linli Xu in obtaining the data to test the algo-
rithm and for providing the code used in [3]. Gilles Blanchard pointed out that the MST
algorithm finds the optimal solution for the single-linkage criterion. The first and third
authors were supported by NSF grant IIS-0093430 and an Intel Corporation Grant.

References

[1] M. Queyranne. “Minimizing symmetric submodular functions”,Math. Programming, 82, pages
3–12. 1998.

[2] R. Rizzi, “On Minimizing symmetric set functions”, Combinatorica 20(3), pages 445–450,
2000.

[3] L. Xu, J. Neufeld, B. Larson and D. Schuurmans. “Maximum Margin Clustering”, in Advances
in Neural Information Processing Systems 17, pages 1537-1544, 2005.

[4] Z. Lin and R. B. Altman. “Finding Haplotype Tagging SNPs by Use of Principal Components
Analysis”, Am. J. Hum. Genet. 75, pages 850-861, 2004.

[5] Jain, A.K. and R.C. Dubes, “Algorithms for Clustering Data.” Englewood Cliffs, N.J.: Prentice
Hall, 1988.

[6] P. Brucker, “On the complexity of clustering problems,” in R. Henn, B. Korte, and W. Oletti
(eds.), Optimization and Operations Research, Lecture Notes in Economics and Mathematical
Systems, Springer, Berlin 157.

[7] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen and H. Tirri. “An MDL framework for
data clustering”, HIIT Technical Report 2004.

[8] M. Delattre and P. Hansen. “Bicriterion Cluster Analysis”, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol-2, No. 4, 1980

[9] M. Narasimhan, N. Jojic and J. Bilmes. “Q-Clustering”, Technical Report, Dept. of Electrical
Engg., University of Washington, UWEETR-2006-0001, 2005

