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Abstract
This paper presents a new filter for online data association problems in
high-dimensional spaces. The key innovation is a representation of the
data association posterior in information form, in which the “proxim-
ity” of objects and tracks are expressed by numerical links. Updating
these links requires linear time, compared to exponential time required
for computing the exact posterior probabilities. The paper derives the
algorithm formally and provides comparative results using data obtained
by a real-world camera array and by a large-scale sensor network simu-
lation.

1 Introduction
This paper addresses the problem of data association in online object tracking [6]. The data
association problem arises in a large number of application domains, including computer
vision, robotics, and sensor networks.

Our setup assumes an online tracking system that receives two types of data:sensor
data, conveying information about the identity or type of objects that are being tracked; and
transition data, characterizing the uncertainty introduced through the tracker’s inability to
reliably track individual objects over time. The setup is motivated by a camera network
which we recently deployed in our lab. Here sensor data relates to the color of clothing of
individual people, which enables us to identify them. Tracks are lost when people walk too
closely together, or when they occlude each other.

We show that the standard probabilistic solution to the discrete data association prob-
lem requires exponential update time and exponential memory. This is because each data
association hypothesis is expressed by a permutation matrix that assigns computer-internal
tracks to objects in the physical world. An optimal filter would therefore need to maintain
a probability distribution over the space of all permutation matrices, which grows expo-
nentially withN , the number of objects in the world. The common remedy involves the
selection of a small numberK of likely hypotheses. This is the core of numerous widely-
used multi-hypothesis tracking algorithms [9, 1]. More recent solutions involve particle
filters [3], which maintain stochastic samples of hypotheses. Both of these techniques are
very effective for small N, but the number of hypothesis they require grows exponentially
with N .

This paper provides a filter algorithm that scales to much larger problems. This filter
maintains an information matrixΩ of sizeN ×N , which relates tracks to physical objects
in the world. The rows ofΩ correspond to object identities, the columns to the tracks of the
tracker.Ω is a matrix ininformation form, that is, it can be thought of as a non-normalized
log-probability.

Fig. 1a shows an example. The highlighted first column corresponds to track 1 in
the tracker. The numerical values in this column suggest that this track is most strongly



(a) Example: Information matrix

Ω =





2 12 4 4
1 2 11 0
10 4 4 15
5 2 1 2





(b) Most likely data association

Â = argmax
A

trA
T
Ω =





0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0





(c) Update: Associating track 2 with object 4





2 12 4 4
1 2 11 0
10 4 4 15

5 2 1 2



 −→





2 12 4 4
1 2 11 0
10 4 4 15

5 3 1 2





(d) Update: Tracks 2 and 3 merge







2 12 4 4

1 2 11 0

10 4 4 15

5 3 1 2







−→









2 11.31 11.31 4

1 10.31 10.31 0

10 4 4 15

5 2.43 2.43 2









(e)Graphical network interpretation of the information form

Figure 1: Illustration of the information form filter for data association in object tracking

associated with object3, since the value10 dominates all other values in this column.
Thus, looking at column1 of Ω in isolation would have us conclude that the most likely
association of track 1 is object 3. However, the most likely permutation matrix is shown
in Fig. 1b; from all possible data association assignments, this matrix receives the highest
score. Its score istr ÂT Ω = 5 + 12 + 11 + 15 = 43 (here “tr” denotes the trace of a
matrix). This permutation matrix associates object 3 with track 4, while associating track
1 with object 4.

The key question now pertains to the construction ofΩ. As we shall see, the update
operations forΩ are simple and parallelizable. Suppose we receive a measurement that
associates track 2 with object 4 (e.g., track 2’s hair color appears to be the same as person
4’s hair color in our camera array). As a result, our approach adds a value to the element in
Ω that links object 4 and track 2, as illustrated in Fig. 1c (the exact magnitude of this value
will be discussed below). Similarly, suppose our tracker is unable to distinguish between
objects 2 and 3, perhaps because these objects are so close together in a camera image that
they cannot be tracked individually. Such a situation leads to a new information matrix, in
which both columns assume the same values, as illustrated in Fig. 1d. The exact values in
this new information matrix are the result of an exponentiated averaging explained below.
All of these updates are easily parallelized, and hence are applicable to a decentralized
network of cameras. The exact update and inference rules are based on a probabilistic
model that is also discussed below.

Given the importance of data association, it comes as no surprise that our algorithm is
related to a rich body of prior work. The data association problem has been studied as an
offlineproblem, in which all data is memorized and inference takes place after data collec-
tion. There exists a wealth of powerful methods, such as RANSAC [4] and MCMC [6, 2],
but those are inherently offline and their memory requirements increase over time. The
dominant online, or filter, paradigm involves the selection ofK representative samples
of the data association matrix, but such algorithms tend to work only for smallN [11].
Relatively little work has focused on the development of compact sufficient statistics for
data association. One alternativeO(N2) technique to the one proposed here was explored
in [8]. This technique uses doubly stochastic matrices, which are computationally hard to
maintain. The first mention of information filters is in [8], but the update rules there were



computationally less efficient (inO(N4)) and required central optimization.
The work in this paper does not address the continuous-valued aspects of object track-

ing. Those are very well understood, and information representations have been success-
fully applied [5, 10].

Information representations are popular in the field of graphical networks. Our ap-
proach can be viewed as a learning algorithm for a Markov network [7] of a special topol-
ogy, where any track and any object are connected by an edge. Such a network is shown in
Fig. 1e. The filter update equations manipulate the strength of the edges based on data.

2 Problem Setup and Bayes Filter Solution

We begin with a formal definition of the data association problem and derive the obvious
but inefficient Bayes filter solution. Throughout this paper, we make the closed world
assumption, that is, there are always the sameN known objects in the world.

2.1 Data Association

We assume that we are given a tracking algorithm that maintainsN internal tracks of the
moving objects. Due to insufficient information, this assumed tracking algorithm does not
always know the exact mapping of identities to internal tracks. Hence, the same internal
track may correspond to different identities at different times.

The data association problem is the problem of assigning theseN tracks toN objects.
Each data association hypothesis is characterized by a permutation matrix of the type shown
in Fig. 1b. The columns of this matrix correspond to the internal tracks, and the rows to
the objects. We will denote the data association matrix byA (not to be confused with the
information matrixΩ). In our closed world,A is always a permutation matrix; hence all
elements are 0 or 1. There are exponentially many permutation matrices, which is a reason
why data association is considered a hard problem.

2.2 Identity Measurement

The correct data association matrixA is unobservable. Instead, the sensors produce local
information about the relation of individual tracks to individual objects. We will denote
sensor measurements byzj, wherej is the index of the corresponding track. Eachzj =
{zij} specifies a local probability distribution in the corresponding object space:

p(xi = yj | zj) = zij with
∑

i

zij = 1 (1)

Herexi is thei-th object in the world, andyj is thej-th track.
The measurement in our introductory example (see Fig. 1c) was of a special form, in

that it elevated one specific correspondence over the others. This occurs whenzij = α for
someα ≈ 1, andzkj = 1−α

N−1 for all k 6= i. Such a measurement arises when the tracker
receives evidence that a specific trackyj corresponds with high likelihood to a specific
objectxi. Specifically, the measurement likelihood of this correspondence isα, and the
error probability is1− α.

2.3 State Transitions

As time passes by, our tracker may confuse tracks, which is a loss of information with
respect to the data association. The tracker confusing two objects amounts to a random flip
of two columns in the data association matrixA.

The model adopted in this paper generalizes this example to arbitrary distributions over
permutations of the columns inA. Let {B1, . . . , BM} be a set of permutation matrices,
and{β1, . . . , βM} with

∑

m βm = 1 be a set of associated probabilities. The “true” per-
mutation matrix undergoes a random transition fromA to A Bm with probabilityβm:

A
prob=βm

−→ A Bm (2)



The sets{B1, . . . , BM} and{β1, . . . , βM} are given to us by the tracker. For the example
in Fig. 1d, in which tracks 2 and 3 merge, the following two permutation matrices will
implement such a merge:

B1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 ; β1 = 0.5 B2 =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



 ; β2 = 0.5 (3)

The first such matrix leaves the association unchanged, whereas the second swaps columns
2 and 3. Sinceβ1 = β2 = 0.5, such a swap happens exactly with probability 0.5.

2.4 Inefficient Bayesian Solution

For smallN , the data association problem now has an obvious Bayes filter solution. Specif-
ically, letA be the space of all permutation matrices. The Bayesian filter solves the identity
tracking problem by maintaining a probabilistic belief over the space of all permutation
matricesA ∈ A. For eachA, it maintains a posterior probability denotedp(A). This prob-
ability is updated in two different ways, reminiscent of the measurement and state transition
updates in DBNs and EKFs.

The measurement step updates the belief in response to a measurementzj . This update
is an application of Bayes rule:

p(A) ←−
1

L
p(A)

∑

i

aij zij (4)

with L =
∑

Ā

p(Ā)
∑

i

āij zij (5)

Hereaij denotes theij-th element of the matrixA. BecauseA is a permutation matrix,
only one element in the sum overi is non-zero (hence there is not really a summation here).

The state transition updates the belief in accordance with the permutation matricesBm

and associated probabilitiesβm (see Eq. 2):

p(A) ←−
∑

m

βm p(A BT
m) (6)

We use here that the inverse of a permutation matrix is its transpose.
This Bayesian filter is an exact solution to our identity tracking problem. Its problem is

complexity: there areN ! permutation matricesA, and we have to compute probabilities for
all of them. Thus, the exact filter is only applicable to problems with smallN . Even if we
want to keep track ofK ≪ N likely permutations—as attempted by filters like the multi-
hypothesis EKF or the particle filter—the required number of tracksK will generally have
to scale exponentially withN (albeit at a slower rate). This exponential scaling renders the
Bayesian filter ultimately inapplicable to the identity tracking problem with largeN .

3 The Information-Form Solution

Our data association filter represents the posterior in condensed form, using anN ×N in-
formation matrix. As a result, it requires linear update time and quadratic memory, instead
of the exponential time and memory requirements of the Bayes filter.

However, we give two caveats regarding our method: it is approximate, and it does not
maintain probabilities. The approximation is the result of a Jensen approximation, which
we will show is empirically accurate. The calculation of probabilities from an information
matrix requires inference, and we will provide several options for performing this inference.

3.1 The Information Matrix

The information matrix, denotedΩ, is a matrix of sizeN × N whose elements are non-
negative.Ω induces a probability distribution over the space of all data association matrices



A, through the following definition:

p(A) =
1

Z
exp tr A Ω with Z =

∑

A

exp tr A Ω (7)

Heretr is the trace of a matrix, andZ is the partition function.
Computing the posterior probabilityp(A) from Ω is hard, due to the difficulty of com-

puting the partition functionZ. However, as we shall see, maintainingΩ is surprisingly
easy, and it is also computationally efficient.

3.2 Measurement Update in Information Form

In information form, the measurement update is a local addition of the form:

Ω ←− Ω +





0 · · · 0 log z1j 0 · · · 0
...
. . .

...
...

...
. . .

...
0 · · · 0 log z1N 0 · · · 0



 (8)

This follows directly from Eq. 4. The complexity of this update isO(N).
Of particular interest is the case where one specific association was affirmed with prob-

ability zij = α, while all others were true with the error probabilityzkj = 1−α
N−1 . Then the

update is of the form

Ω ←− Ω +























0 · · · 0 c 0 · · · 0
...
. . .

...
...

...
. . .

...
0 · · · 0 c 0 · · · 0
...
. . .

... log α
...
. . .

...
0 · · · 0 c 0 · · · 0
...
. . .

...
...

...
. . .

...
0 · · · 0 c 0 · · · 0























with c = log
1− α

N − 1
(9)

However, sinceΩ is a non-normalized matrix (it is normalized via the partition functionZ
in Eq. 7), we can modifyΩ as long asexp tr A Ω is changed by the same factor for any
A. In particular, we can subtractc from an entire column inΩ; this will affect the result of
exp trA Ω by a factor ofexp c, which is independent ofA and hence will be subsumed by
the normalizerZ. This allows us to perform a more efficient update

ωij ←− ωij + log α− log
1− α

N − 1
(10)

whereωij is theij-th element ofΩ. This update is indeed of the form shown in Fig. 1c. It
requiresO(1) time, is entirely local, and is an exact realization of Bayes rule in information
form.

3.3 State Transition Update in Information Form

The state transition update is also simple, but it is approximate. We show that using a
Jensen bound, we obtain the following update for the information matrix:

Ω ←− log
∑

m

βm BT
m expΩ (11)

Here the expression “exp Ω” denotes a component-wise exponentiation of the matrixΩ;
the result is also a matrix. This update implements a “dual” of a geometric mean; here
the exponentiation is applied to the individual elements of this mean, and the logarithm is
applied to the result. It is important to notice that this update only affects elements inΩ
that might be affected by a permutationBm; all others remain the same.

A numerical example of this update was given in Fig. 1d, assuming the permutation
matrices in Eq. 3. The values there are the result of applying this update formula. For
example, for the first row we getlog 1

2 (exp 12 + exp 4) = 11.3072.



The derivation of this update formula is straightforward. Webegin with Eq. 6, writ-
ten in logarithmic form. The transformations rely heavily on the fact thatA andBm are
permutation matrices. We use the symbol “tr∗” for a multiplicative version of the matrix
trace, in which all elements on the diagonal are multiplied.

log p(A) ←− log
∑

m

βm p(A BT
m)

= const. + log
∑

m

βm exp tr A BT
m Ω

= const. + log
∑

m

βm tr∗ exp A BT
m Ω

= const. + log
∑

m

βm tr∗ A BT
m exp Ω

≤ const. + log tr∗ A
∑

m

βm BT
m exp Ω

= const. + tr A

[

log
∑

m

βm BT
m expΩ

]

(12)

The result is of the form of (the logarithm of) Eq. 7. The expression in brackets is equivalent
to the right-hand side of the update Eq. 11. A benefit of this update rule is that it only affects
columns inΩ that are affected by a permutationBm; all other columns are unchanged.

We note that the approximation in this derivation is the result of applying a Jensen
bound. As a result, we gain a compact closed-form solution to the update problem, but the
state transition step may sacrifice information in doing so (as indicated by the “≤” sign).
In our experimental results section, however, we find that this approximation is extremely
accurate in practice.

4 Computing the Data Association

The previous section formally derived our update rules, which are simple and local. We
now address the problem of recovering actual data association hypotheses from the infor-
mation matrix, along with the associated probabilities.

We consider three cases: the computation of the most likely data association matrix as
illustrated in Fig. 1b; the computation of a relative probability of the formp(A)/p(A′); and
the computation of an absolute probability or expectation.

To recoverargmaxA p(A), we need only solve a linear program.
Relative probabilities are also easy to recover. Consider, for example, the quotient of

the probabilityp(A)/p(A′) for two identity matricesA and A′. When calculating this
quotient from Eq. 7, the normalizerZ cancels out:

p(A)

p(A′)
= exp tr(A−A′) Ω (13)

Absolute probabilities and expectations are generally the most difficult to compute.
This is because of the partition functionZ in Eq. 7, whose exact calculation requires con-
sideringN ! permutation matrices.

Our approximate method for recovering probabilities/expectations is based on the
Metropolis algorithm. Specifically, consider the expectation of a functionf :

E[f(A)] =
∑

A

f(A) p(A) (14)

Our method approximates this expression through a finite sample of matricesA[1], A[2], . . .,
using Metropolis and the proposal distribution defined in Eq. 13. This proposal generates
excellent results for simple functionsf (e.g., the marginal of a single identity). For more



(a) camera (b) array of 16 ceiling-mounted cameras(c) camera images (d) 2 of the tracks

Figure 2: The camera array, part of the common area in the Stanford AI Lab. Panel (d) compares
our esitmate with ground truth for two of the tracks. The data association is essentially correct at all
times.

(a) ComparisonK-hypothesis vs.
information-theoretic tracker

our approach

K-hypotheses

(b) Comparison using a DARPA challenge
data set produced by Northrop Grumman

our approach
@@I

Figure 3: Results for our approach information-form filter the common multi-hypothesis approach
for (a) synthetic data and (b) a DARPA challenge data set. The comparison (b) involves additional
algorithms, including one published in [8].

complex functionsf , we refer the reader to improved proposal distributions that have been
found to be highly efficient in related problems [6, 2].

5 Experimental Results

To evaluate this algorithm, we deployed a network of ceiling-mounted cameras in our lab,
shown in Fig. 2. We used 16 cameras to track individuals walking through the lab. The
tracker uses background subtraction to find blobs and uses a color histogram to classify
these blobs. Only when two or more people come very close to each other might the
tracker lose track of individual people. We find that forN = 5 our method tracks people
nearly perfectly, but so does the full-blown Bayesian solution, as well as theK-best multi-
hypothesis method that is popular in the tracking literature.

To investigate scaling to largerN , we compared our approach on two data sets: a syn-
thetic one with up toN = 1, 600 objects, and a dataset using an sensor network simulation
provided to us by Northrop Grumman through an ongoing DARPA program. The latter
set is thought to be realistic. It was chosen because it involves a large number (N = 200)
of moving objects, whose motion patterns come from a behavioral model. In all cases,
we measured the number of objects mislabeled in the maximum likelihood hypothesis (as
found by solving the LP). All results are averaged over 50 runs.

The comparison in Fig. 3a shows that our approach outperforms the traditionalK-best
hypothesis approach (withK = N ) by a large margin. Furthermore, our approach seems
to be unaffected byN , the number of entities in the environment, whereas the traditional
approach deteriorates. This comes as no surprise, since the traditional approach requires
increasing numbers of samples to cover the space of all data associations. The results in
Fig. 3b compare (from left to right), the most likely hypothesis, the most recent sensor
measurement, theK-best approach withK = 200, an approach proposed in [8], and our
approach. Notice that this plot is in log-form.



No comparisons were attempted with offline techniques, such as the ones in [4, 6],
because the data sets used here are quite large and our interest is online filtering.

6 Conclusion
We have provided an information form algorithm for the data association problem in object
tracking. The key idea of this approach is to maintain a cumulative matrix of information
associating computer-internal tracks with physical objects. Updating this matrix is easy;
furthermore, efficient methods were proposed for extracting concrete data association hy-
potheses from this representation. Empirical work using physical networks of camera ar-
rays illustrated that our approach outperforms alternative paradigms that are commonly
used throughout all of science.

Despite these advances, the work possesses a number of limitations. Specifically, our
closed world assumption is problematic, although we believe the extension to open worlds
is relatively straightforward. Also missing is a tight integration of our discrete formula-
tion into continuous-valued traditional tracking algorithms such as EKFs. Such extensions
warrant further research.

We believe the key innovation here is best understood from a graphical model perspec-
tive. SamplingK good data associationscannotexploit conditional independence in the
data association posterior, hence will always require thatK is an exponential function of
N . The information form and the equivalent graphical network in Fig. 1e exploits condi-
tional independences. This subtle difference makes it possible to get away withO(N2)
memory andO(N) computation without a loss of accuracy whenN increases, as shown
in Fig. 3a. The information form discussed here—and the associated graphical networks—
promise to overcome a key brittleness associated with the current state-of-the-art in online
data association.
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