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Abstract

We present an efficient algorithm to actively select queries for learning
the boundaries separating a function domain into regions where the func-
tion is above and below a given threshold. We develop experiment selec-
tion methods based on entropy, misclassification rate, variance, and their
combinations, and show how they perform on a number of data sets. We
then show how these algorithms are used to determine simultaneously
valid 1 − α confidence intervals for seven cosmological parameters. Ex-
perimentation shows that the algorithm reduces the computation neces-
sary for the parameter estimation problem by an order of magnitude.

1 Introduction
In many scientific and engineering problems where one is modeling some function over an
experimental space, one is not necessarily interested in the precise value of the function
over an entire region. Rather, one is curious about determining the set of points for which
the function exceeds some particular value. Applications include determining the func-
tional range of wireless networks [1], factory optimization analysis, and gaging the extent
of environmental regions in geostatistics. In this paper, we use this idea to compute confi-
dence intervals for a set of cosmological parameters that affect the shape of the temperature
power spectrum of the Cosmic Microwave Background (CMB).

In one dimension, the threshold discovery problem is a root-finding problem where no



hints as to the location or number of solutions are given; several methods exist which can
be used to solve this problem (e.g. bisection, Newton-Raphson). However, one dimensional
algorithms cannot be easily extended to the multivariate case. In particular, the ideas of root
bracketing and function transversal are not well defined [2]; given a particular bracket of a
continuous surface, there will be an infinite number of solutions to the equationf(~x)− t =
0, since the solution in multiple dimensions is a set of surfaces, rather than a set of points.

Numerous active learning papers deal with similar problems in multiple dimensions. For
instance, [1] presents a method for picking experiments to determine the localities of local
extrema when the input space is discrete. Others have used a variety of techniques to reduce
the uncertainty over the problem’s entire domain to map out the function (e.g. [3], and [4]),
or locate the optimal value (e.g. [5]).

We are interested in locating the subset of the input space wherein the function is above
a given threshold. Algorithms that merely find a local optimum and search around it will
not work in general, as there may be multiple disjoint regions above the threshold. While
techniques that map out the entire surface of the underlying function will correctly identify
those regions which are above a given threshold, we assert that methods can be developed
that are more efficient at localizing a particular contour of the function. Intuitively, points
on the function that are located far from the boundary are less interesting, regardless of
their variance. In this paper, we make the following contributions to the literature:

• We present a method for choosing experiments that is more efficient than global
variance minimization, as well as other heuristics, when one is solely interested in
localizing a function contour.

• We show that this heuristic can be used in continuous valued input spaces, without
defininga priori a set of possible experiments (e.g. imposing a grid).

• We use our function threshold detection method to determine1−α simultaneously
valid confidence intervals of CMB parameters, making no assumptions about the
model being fit and few assumptions about the data in general.

2 Algorithm
We begin by formalizing the problem. Assume that we are given a bounded sample space
S ⊂ R

n and a scoring function:f : S → R, but possibly no data points ({s, f(s)}, s ∈ S).
Given a thresholdt, we want to find the set of pointsS′ wheref is equal to or above the
threshold:{s ∈ S′|s ∈ S, f(s) ≥ t}. If f is invertible, then the solution is trivial. However,
it is often the case thatf is not trivially invertible, such as the CMB model mentioned in
§1. In these cases, we can discoverS′ by modelingS given some experiments. Thus, we
wish to know how to choose experiments that help us determineS′ efficiently.

We assume that the cost to computef(s) givens is significant. Thus, care should be taken
when choosing the next experiment, as picking optimum points may reduce the runtime
of the algorithm by orders of magnitude. Therefore, it is preferable to analyze current
knowledge about the underlying function and select experiments which quickly refine the
estimate of the function around the threshold of interest. There are several methods one
could use to create a model of the data, notably some form of parametric regression. How-
ever, we chose to approximate the unknown boundary as a Gaussian Process (GP), as many
forms of regression (e.g. linear) necessarily smooths the data, ignoring subtle features of
the function that may become pronounced with more data. In particular, we use ordinary
kriging, a form of GPs, which assumes that the semivariogram (K(·, ·) is a linear function
of the distance between samples [6]; this estimation procedure assumes the the sampled
data are normal with mean equal to the true function and variance given by the sampling
noise . The expected value ofK(si, sj) for si, sj ∈ S, is can be written as

E[K(si, sj)] =
k

2

[

n
∑

l=1

αl(sil − sjl)
2

]1/2

+ c



wherek is a constant — known as the kriging parameter — which is an estimated limit
on the first derivate of the function,αl is a scaling factor for each dimension, andc is the
variance (e.g. experimental noise) of the sampled points. Since, the joint distribution of a
finite set of sampled points for GPs is Gaussian, the predicted distribution of a query point
sq given a known setA is normal with mean and variance given by

µsq
= µA + Σ′

AqΣ
−1

AA(yA − µA) (1)

σ2

sq
= Σ′

AqΣ
−1

AAΣAq (2)

whereΣAq denotes the column vector with theith entry equal toK(si, sq), ΣAA denotes
the semivariance matrix between the elements ofA (the ij element ofΣAA is K(si, sj)),
yA denotes the column vector with theith entry equal tof(si), the true value of the function
for each point inA, andµA is the mean of theyA’s.

As given, prediction with GP requiresO(n3) time, as ann × n linear system of equations
must be solved. However, for many GPs — and ordinary kriging in particular — the
correlation between two points decreases as a function of distance. Thus, the full GP
model can be approximated well by a local GP, where only thek nearest neighbors of
the query point are used to compute the prediction value; this reduces the computation
time toO(k3 log(n)) per prediction, sinceO(log(n)) time is required to find the k-nearest
neighbors using spatial indexing structures such as balanced kd-trees.

Since we have assumed that experimentation is expensive, it would be ideal to iteratively
analyze the entire input space and pick the next experiment in such a manner that mini-
mized the total number of experiments necessary. If the size of the parameter space (|S|)
is finite, such an approach may be feasible. However, if|S| is large or infinite, testing all
points may be impractical. Instead of imposing some arbitrary structure on the possible ex-
perimental points (such as using a grid), our algorithm chooses candidate points uniformly
at random from the input space, and then selects the candidate point with the highest score
according to the metrics given in§2.1. This allows the input space to be fully explored (in
expectation), and ensures that interesting regions of space that would have fallen between
successive grid points are not missed; in§4 we show how imposing a grid upon the input
space results in just such a situation. While the algorithm is unable to consider the en-
tire space for each sampling iteration, over multiple iterations it does consider most of the
space, resulting in the function boundaries being quickly localized, as can be seen in§3.

2.1 Choosing experiments from among candidates

Given a set of random input points, the algorithm evaluates each one and chooses the point
with the highest score as the location for the next experiment. Below is the list of evaluation
methods we considered.

Random: One of the candidate points is chosen uniformly at random. This method serves
as a baseline for comparison,

Probability of incorrect classification: Since we are trying to map the boundary between
points above and below a threshold, we consider choosing the point from our random sam-
ple which has the largest probability of being misclassified by our model. Using the dis-
tribution defined by Equations 1 and 2, the probability,p, that the point is above the given
threshold can be computed. The point is predicted to be above the threshold ifp > 0.5 and
thus the expected misclassification probability ismin(p, 1 − p).

Entropy: Instead of misclassification probability we can consider entropy:−p log2(p) −
(1 − p) log2(1 − p). Entropy is a monotonic function of the misclassification rate so these
two will not choose different experiments. They are listed separately because they have
different effects when mixed with other evaluations. Both entropy and misclassification



will choose points near the boundary. Unfortunately, they have the drawback that once
they find a point near the boundary they continue to choose points near that location and
will not explore the rest of the parameter space.

Variance: Both entropy and probability of incorrect classification suffer from a lack of
incentive to explore the space. To rectify this problem, we consider the variance of each
query point (given by Equation 2) as an evaluation metric. This metric is common in active
learning methods whose goal is to map out an entire function. Since variance is related
to the distance to nearest neighbors, this strategy chooses points that are far from areas
currently searched, and hence will not get stuck at one boundary point. However, it is well
known that such approaches tend to spend a large portion of their time on the edges of the
parameter space and ultimately cover the space exhaustively [7].

Information gain: Information gain is a common myopic metric used in active learning.
Information gain at the query point is the same as entropy in our case because all run
experiments are assumed to have the same variance. Computing a full measure of informa-
tion gain over the whole state space would provide an optimal 1-step experiment choice.
In some discrete or linear problems this can be done, but it is intractable for continuous
non-linear spaces. We believe the good performance of the evaluation metrics proposed
below stems from their being heuristic proxies for global information gain or reduction in
misclassification error.

Products of metrics: One way to rectify the problems of point policies that focus solely
on points near the boundary or points with large variance regardless of their relevance to
refining the predictive model, is to combine the two measures. Intuitively, doing this can
mimic the idea of information gain; the entropy of a query point measures the classification
uncertainty, while the variance is a good estimator of how much impact a new observation
would have in this region, and thus what fraction the uncertainty would be reduced. [1]
proposed scoring points based upon the product of their entropy and variance to identify
the presence of local maxima and minima, a problem closely related to boundary detec-
tion. We shall also consider scoring points based upon the product of their probability of
incorrect classification and variance. Note that while entropy and probability of incorrect
classification are monotonically related, entropy times variance and probability of incorrect
classification times variance are not.

Straddle: Using the same intuition as for products of heuristics, we define straddle heuris-
tic, asstraddle(sq) = 1.96σ̂q −

∣

∣f̂(sq) − t
∣

∣, The straddle algorithm scores points highest
that are both unknown and near the boundary. As such, the straddle algorithm prefers points
near the threshold, but far from previous examples. The straddle score for a point may be
negative, which indicates that the model currently estimates the probability that the point
is on a boundary is less than five percent. Since the straddle heuristic relies on the variance
estimate, it is also subject to oversampling edge positions.

3 Experiments
We now assess the accuracy with which our model reproduces a known function for the
point policies just described. This is done by computing the fraction of test points in which
the predictive model agrees with the true function about which side of the threshold the
test points are on after some fixed number of experiments. This process is repeated several
times to account for variations due to the random sampling of the input space.

The first model we consider is a 2D sinusoidal function given by

f(x, y) = sin(10x) + cos(4y) − cos(3xy) x ∈ [0, 1], y ∈ [0, 2],

with a boundary threshold oft = 0. This function and threshold were examined for the
following reasons: 1) the target threshold winds through the plot giving ample length to
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Figure 1: Predicted function boundary (solid), true function boundary (dashed), and exper-
iments (dots) for the 2D sinusoid function after A) 50 experiments and B) 100 experiments
using the straddle heuristic and C) 100 experiments using the variance heuristic.

Table 1: Number of experiments required to obtain 99% classification accuracy for the 2D
models and 95% classification accuracy for the 4D model for various heuristics. Heuristics
requiring more than 10,000 experiments to converge are labeled “did not converge”.

2D Sin.(1K Cand.) 2D Sin.(31 Cand.) 2D DeBoor 4D Sinusoid
Random 617±158 617±158 7727±987 6254±364
Entropy did not converge did not converge did not converge 6121±1740
Variance 207±7 229±9 4306±573 2320±57
Entropy×Var 117±5 138±6 1621±201 1210±43
Prob. Incor.×Std 113±11 129±14 740±117 1362±89
Straddle 106±5 123±6 963±136 1265±94

test the accuracy of the approximating model, 2) the boundary is discontinuous with several
small pieces, 3) there is an ambiguous region (around(0.9, 1), where the true function is
approximately equal to the threshold, and the gradient is small and 4) there are areas in
the domain where the function is far from the threshold and hence we can ensure that the
algorithm is not oversampling in these regions.

Table 1 shows the number of experiments necessary to reach a 99% and 95% accuracy
for the 2D and 4D models, respectively. Note that picking points solely on entropy does
not converge in many cases, while both the straddle algorithm and probability incorrect
times standard deviation heuristic result in approximations that are significantly better than
random and variance heuristics. Figures 1A-C confirm that the straddle heuristic is aiding
in boundary prediction. Note that most of the 50 experiments sampled between Figures 1A
and 1B are chosen near the boundary. The 100 experiments chosen to minimize the variance
result in an even distribution over the input space and a worse boundary approximation, as
seen in Figure 1C. These results indicate that the algorithm is correctly modeling the test
function and choosing experiments that pinpoint the location of the boundary.

From the Equations 1 and 2, it is clear that the algorithm does not depend on data dimen-
sionality directly. To ensure that heuristics are not exploiting some feature of the 2D input
space, we consider the 4D sinusoidal function

f(~x) = sin(10x1) + cos(4x2) − cos(3x1x2) + cos(2x3) + cos(3x4) − sin(5x3x4)

where~x ∈ [(0, 0, 1, 0), (1, 2, 2, 2)] andt = 0. Comparison of the 2D and 4D results in Ta-
ble 1 reveals that the relative performance of the heuristics remains unchanged, indicating
that the best heuristic for picking experiments is independent of the problem dimension.

To show that the decrease in the number candidate points relative to the input parameter
space that occurs with higher dimensional problems is not an issue, we reconsider the 2D



sinusoidal problem. Now, we use only 31 candidate points instead of 1000 to simulate the
point density difference between 4D and 2D. Results shown in Table 1, indicate that re-
ducing the number of candidate points does not drastically alter the realized performance.
Additional experiments were performed on a discontinuous 2D function (the DeBoor func-
tion given in [1]) with similar results, as can be seen in Table 1.

4 Statistical analysis of cosmological parameters
Let us now look at a concrete application of this work: a statistical analysis of cosmolog-
ical parameters that affect formation and evolution of our universe. One key prediction
of the Big Bang model for the origin of our universe is the presence of a2.73K cosmic
microwave background radiation (CMB). Recently, the Wilkinson Microwave Anisotropy
Project (WMAP) has completed a detailed survey of the this radiation exhibiting small
CMB temperature fluctuations over the sky [8]. It is believed that the size and spatial prox-
imity of these temperature fluctuations depict the types and rates of particle interactions
in the early universe and consequently characterize the formation of large scale structure
(galaxies, clusters, walls and voids) in the current observable universe. It is conjectured
that this radiation permeated through the universe unchanged since its formation 15 billion
years ago. Therefore, the sizes and angular separations of these CMB fluctuations give an
unique picture of the universe immediately after the Big Bang and have a large implication
on our understanding of primordial cosmology.

An important summary of the temperature fluctuations is the CMB power spectrum shown
in Figure 2, which gives the temperature variance of the CMB as a function of spatial
frequency (or multi-pole moment). It is well known that the shape of this curve is affected
by at least seven cosmological parameters: optical depth (τ ), dark energy mass fraction
(ΩΛ), total mass fraction (Ωm), baryon density (ωb), dark matter density (ωdm), neutrino
fraction (fn), and spectral index (ns). For instance, the height of first peak is determined
by the total energy density of the universe, while the third peak is related to the amount of
dark matter. Thus, by fitting models of the CMB power spectrum for given values of the
seven parameters, we can determine how the parameters influence the shape of the model
spectrum. By examining those models that fit the data, we can then establish the ranges of
the parameters that result in models which fit the data.

Previous work characterizing confidence intervals for cosmological parameters either used
marginalization over the other parameters, or made assumptions about the values of the
parameters and/or the shape of the CMB power spectrum. However, [9] notes that “CMB
data have now become so sensitive that the key issue in cosmological parameter determi-
nation is not always the accuracy with which the CMB power spectrum features can be
measured, but often what prior information is used or assumed.” In this analysis, we make
no assumptions about the ranges or values of the parameters, and assume only that the data
are normally distributed around the unknown CMB spectrum with covariance known up
to a constant multiple. Using the method of [10], we create a non-parametric confidence
ball (under a weighted squared-error loss) for the unknown spectrum that is centered on a
nonparametric estimate with a radius for each specified confidence level derived from the
asymptotic distribution of a pivot statistic1. For any candidate spectrum, membership in the
confidence ball can be determined by comparing the ball’s radius to the variance weighted
sum of squares deviation between the candidate function and the center of the ball.

One advantage of this method is that it gives us simultaneously valid confidence intervals
on all seven of our input parameters; this is not true for1 − α confidence intervals derived
from a collection ofχ2 distributions where the confidence intervals often have substantially
lower coverage [11]. However, there is no way to invert the modeling process to determine
parameter ranges given a fixed sum of squared error. Thus, we use the algorithm detailed

1See Appendix 3 in [10] for the derivation of this radius
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in §2 to map out the confidence surface as a function of the input parameters; that is, we
use the algorithm to pick a location in the seven dimensional parameter space to perform
an experiment, and then run CMBFast [12] to create simulated power spectrum given this
set of input parameters. We can then compute the sum of squares of error for this spectrum
(relative to the regressed model) and easily tell if the 7D input point is inside the confidence
ball. In practice, we model the sum of squared error, not the confidence level of the model.
This creates a more linear output space, as the confidence level for most of the models is
zero, and thus it is impossible to distinguish between poor and terrible model fits.

Due to previous efforts on this project, we were able to estimate the semivariogram of the
GP from several hundred thousand random points already run through CMBFast. For this
work, we chose theαl’s such that the partials in each dimension where approximately unity,
resulting ink ≃ 1; c was set to a small constant to account for instabilities in the simulator.
These points also gave a starting point for our algorithm2. Subsequently, we have run
several hundred thousand more CMBFast models. We find that it takes 20 seconds to pick
an experiment from among a set of 2,000 random candidates. CMBFast then takes roughly
3 minutes to compute the CMB spectrum given our chosen point in parameter space.

In Figure 3, we show a plot of baryon density (ωB) versus the dark matter density (ωDM) of
the universe over all values of the other five parameters (τ, ΩDE , ΩM , fn, ns). Experiments
that are within a 95% confidence ball given the CMB data are plotted in black, while
those that are rejected at the 95% level are gray. Note how there are areas that remain
unsampled, while the boundary regions (transitions between gray and black points) are
heavily sampled, indicating that our algorithm is choosing reasonable points. Moreover,
the results of Figure 3 agree well with results in the literature (derived using parametric
models and Bayesian analysis), as well as with predictions favored by nucleosynthesis [9].

While hard to distinguish in Figure 3, the bottom left group of points above the 95% confi-
dence boundary splits into two separate peaks in parameter space. The one to the left is the
concordance model, while the second peak (the one to the right) is not believed to represent
the correct values of the parameters (due to constraints from other data). The existence of
high probability points in this region of the parameter space has been suggested before,
but computational limitations have prevented much characterization of it. Moreover, the
third peak, near the top right corner of Figure 3 was basically ignored by previous grid
based approaches. Comparison of the number of experiments performed by our straddle

2While initial values are not required (as we have seen in§3), it is possible to incorporate this
background knowledge into the model to help the algorithm converge more quickly.



Table 2: Number of points found in the three peaks for the grid based approach of [9] and
our straddle algorithm.

Peak Center # Points in Effective Radius
ωDM ωB Grid Straddle

Concordance Model 0.116 0.024 2118 16055
Peak 2 0.165 0.023 2825 9634
Peak 3 0.665 0.122 0 5488

Total Points 5613300 603384

algorithm with the grid based approach used by [9] is shown in Table 2. Even with only
10% of the experiments used in the grid approach, we sampled the concordance peak 8
times more frequently, and the second peak 3.4 times more frequently than the grid based
approach. Moreover, it appears that the grid completely missed the third peak, while our
method sampled it over 5000 times. These results dramatically illustrate the power of our
adaptive method, and show how it does not suffer from assumptions made by a grid-based
approaches. We are following up on the scientific ramifications of these results in a separate
astrophysics paper.

5 Conclusions
We have developed an algorithm for locating a specified contour of a function while min-
imizing the number queries necessary. We described and showed how several different
methods for picking the next experimental point from a group of candidates perform on syn-
thetic test functions. Our experiments indicate that the straddle algorithm outperforms pre-
viously published methods, and even handles functions with large discontinuities. More-
over, the algorithm is shown to work on multi-dimensional data, correctly classifying the
boundary at a 99% level with half the points required for variance minimizing methods.
We have then applied this algorithm to a seven dimensional statistical analysis of cosmo-
logical parameters affecting the Cosmic Microwave Background. With only a few hundred
thousand simulations we are able to accurately describe the interdependence of the cosmo-
logical parameters, leading to a better understanding of fundamental physical properties.
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