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Abstract

We develop a family of upper and lower bounds on the worst-case ex-
pected KL loss for estimating a discrete distribution on a finite numberm
of points, givenN i.i.d. samples. Our upper bounds are approximation-
theoretic, similar to recent bounds for estimating discrete entropy; the
lower bounds are Bayesian, based on averages of the KL loss under
Dirichlet distributions. The upper bounds are convex in their parameters
and thus can be minimized by descent methods to provide estimators with
low worst-case error; the lower bounds are indexed by a one-dimensional
parameter and are thus easily maximized. Asymptotic analysis of the
bounds demonstrates the uniform KL-consistency of a wide class of es-
timators asc = N/m → ∞ (no matter how slowly), and shows that
no estimator is consistent forc bounded (in contrast to entropy estima-
tion). Moreover, the bounds are asymptotically tight asc → 0 or ∞,
and are shown numerically to be tight within a factor of two for allc.
Finally, in the sparse-data limitc → 0, we find that the Dirichlet-Bayes
(add-constant) estimator with parameter scaling like−c log(c) optimizes
both the upper and lower bounds, suggesting an optimal choice of the
“add-constant” parameter in this regime.

Introduction

The estimation of discrete distributions given finite data — “histogram smoothing” — is a
canonical problem in statistics and is of fundamental importance in applications to language
modeling, informatics, and safari organization (1–3). In particular, estimation of discrete
distributions under Kullback-Leibler (KL) loss is of basic interest in the coding commu-
nity, in the context of two-step universal codes (4, 5). The problem has received signicant
attention from a variety of statistical viewpoints (see, e.g., (6) and references therein); in
this work, we will focus on the “minimax” approach, that is, on developing estimators
which work well even in the worst case, with the performance of an estimator measured by
the average KL loss. The recent work of (7) and (8) has answered many of the important
asymptotic questions in the heavily-sampled limit, where the number of data samples,N ,
is much larger than the number of support points,m, of the unknown distribution; in par-
ticular, the optimal (minimax) error rate has been identified in closed form in the case that
m is fixed andN → ∞, and a simple estimator that asymptotically achieves this optimum



has been described. Our goal here is to analyze further the opposite case, whenN/m is
bounded or even small (the sparse data case). It will turn out that the estimators which are
asymptotically optimal asN/m → ∞ are far from optimal in this sparse data case, which
may be considered more important for applications to modeling of large dictionaries.

Much of our approach is influenced by the similarities to the entropy estimation problem
(9–11), where the sparse data regime is also important for applications and of independent
mathematical interest: how do we decide how much probability to assign to bins for which
no samples, or very few samples, are observed? We will emphasize the similarities (and
important differences) between these two problems throughout.

Upper bounds

The basic idea is to find a simple upper bound on the worst-case expected loss, and then to
minimize this upper bound over some tractable class of possible estimators; the resulting
optimized estimator will then be guaranteed to possess good worst-case properties. Clearly
we want this upper bound to be as tight as possible, and the space of allowed estimators
to be as large as possible, while still allowing easy minimization. The approach taken here
is to develop bounds which are convex in the estimator, and to allow the estimators to
range over a large convex space; this implies that the minimization problem is tractable by
descent methods, since no non-global local minima exist.

We begin by defining the class of estimators we will be minimizing over:p̂ of the form

p̂i =
g(ni)

∑m
i=1 g(ni)

,

with ni defined as the number of samples observed in bini and the constantsgj ≡ g(j)
taking values in the(N + 1)−dimensional convex spacegj ≥ 0; note that normalization
of the estimated distribution is automatically enforced. The “add-constant” estimators,
gj = j+α

N+mα , α > 0, are an important special case (7).

After some rearrangement, the expected KL loss for these estimators satisfies

E~p (L(~p, p̂)) = E~p

(

m
∑

i=1

pi log
pi

p̂i

)

=
∑

i



−H(pi) +

N
∑

j=0

(− log gj)piBN,j(pi)



+ E~p

(

log

m
∑

k=1

g(nk)

)

≤
∑

i



−H(pi) +
∑

j

(− log gj)piBN,j(pi)



+ E~p

(

−1 +
∑

k

g(nk)

)

=
∑

i

f(pi);

we have abbreviated~p the true underlying distribution, the entropy function

H(t) = −t log t,

the binomial functions

BN,j(t) =

(

N

j

)

tj(1 − t)N−j ,

and
f(t) = −H(t) − t+

∑

j

(gj − t log gj)BN,j(t).



Equality holds iff
∑

k g(nk) is constant almost surely (as is the case, e.g., for any add-
constant estimator).

We have two distinct simple bounds on the above: first, the obvious
m
∑

i=1

f(pi) ≤ m max
0≤t≤1

f(t),

which generalizes the bound considered in (7) (where a similar bound was derived asymp-
totically asN → ∞ for m fixed, and applied only to the add-constant estimators), or

∑

i

f(pi) ≤

(

m max
0≤t≤1/m

f(t)

)

+

(

max
1/m≤t≤1

f(t)

t

)

,

which follows easily from
∑

i pi = 1; see (11) for a proof. The above maxima are always
achieved, by the compactness of the intervals and the continuity of the binomial and entropy
functions. Again, the key point is that these bounds are uniform over all possible underlying
p (that is, they bound the worst-case error).

Why two bounds? The first is nearly tight forN >> m (it is actually asymptotically
possible to replacem with m − 1 in this limit, due to the fact thatpi must sum to one;
see (7, 8)), but grows linearly withm and thus cannot be tight form comparable to or
larger thanN . In particular, the optimizer doesn’t depend onm, only N (and hence the
bound can’t help but behave linearly inm). The second bound is much more useful (and,
as we show below, tight) in the data-sparse regimeN << m.

The resulting minimization problems have a polynomial approximation flavor: we are try-
ing to find an optimal set of weightsgj such that the sum in the definition off(t) (a
polynomial in t) will be as close toH(t) + t as possible. In this sense our approach is
nearly identical to that recently followed for bounding the bias in the entropy estimation
case (11, 12). There are three key differences, however: the term penalizing the variance
in the entropy case is missing here, the approximation only has to be good from above, not
from below as well (both making the problem easier), and the approximation is nonlinear,
instead of linear, ingj (making the problem harder). Indeed, we will see below that the en-
tropy estimation problem is qualitatively easier than the estimation of the full distribution,
despite the entropic form of the KL loss.

Smooth minimization algorithm

In the next subsections, we develop methods for minimizing these bounds as a function of
gj (that is, for choosing estimators with good worst-case properties). The first key point is
that the bounds involve maxima over a collection of convex functions ingj , and hence the
bounds are convex ingj ; since the coefficientsgj take values in a convex set, no non-global
local minima exist, and the global mimimum can be found by simple descent procedures.

One complicating factor is that the bounds are nondifferentiable ingj : while methods
for direct minimization of this type ofL∞ error exist (13), they require that we track the
location int of the maximal error; since this argmax can jump discontinuously as a function
of gj , this interior maximization loop can be time-consuming. A more efficient solution
is given by approximating this nondifferentiable objective function by smooth functions
which retain the convexity of the original objective. We employ a Laplace approximation
(albeit in a different direction than usual): use the fact that

max
t∈A

h(t) = lim
q→∞

1

q
log

∫

t∈A

eqh(t)

for continuoush(t) and compactA; thus, lettingh(t) = f(t), we can minimize

Uq({gj}) ≡

∫ 1

0

eqf(t)dt,



or

Vq({gj}) ≡ log

(

∫ 1/m

0

eqmf(t)dt

)

+ log

(

∫ 1

1/m

eq
f(t)

t dt

)

,

for q increasing; these new objective functions are smooth, with easily-computable gradi-
ents, and are still convex, sincef(t) is convex ingj , convex functions are preserved under
convex, increasing maps (i.e., the exponential), and sums of convex functions are convex.
(In fact, sinceUq is strictly convex ing for any q, the minima are unique, which to our
knowledge is not necessarily the case for the original minimax problem.) It is easy to show
that any limit point of the sequence of minimizers of the above problems will minimize
the original problem; applying conjugate gradient descent for eachq, with the previous
minimizer as the seed for the minimization in the next largestq, worked well in practice.

Initialization; connection to Laplace estimator

It is now useful to look for suitable starting points for the minimization. For example, for
the first bound, approximate the maximum by an integral, that is, findgj to minimize

m

∫ 1

0

dt



−H(t) − t+
∑

j

(gj − t log gj)BN,j(t)



 .

(Note that this can be thought of as the limit of the aboveUq minimization problem asq →
0, as can be seen by expanding the exponential.) Thegj that minimizes this approximation
to the upper bound is trivially derived as

gj =

∫ 1

0
tBN,j(t)dt

∫ 1

0
BN,j(t)dt

=
β(j + 2, N − j + 1)

β(j + 1, N − j + 1)
=

j + 1

N + 2
,

with β(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt defined as usual. The resulting estimatorp̂ agrees

exactly with “Laplace’s estimator,” the add-αestimator withα = 1. Note, though, that to
derive thisgj , we completely ignore the first two terms (−H(t) − t) in the upper bound,
and the resulting estimator can therefore be expected to be suboptimal (in particular, the
gj will be chosen too large, since−H(t) − t is strictly decreasing fort < 1). Indeed,
we find that add-αestimators withα < 1 provide a much better starting point for the
optimization, as expected given (7,8). (Of course, forN/m large enough an asymptotically
optimal estimator is given by the perturbed add-constant estimator of (8), and none of this
numerical optimization is necessary.) In the limit asc = N/m→ 0, we will see below that
a better initialization point is the add-αestimator with parameterα ≈ H(c) = −c log c.

Fixed-point algorithm

On examining the gradient of the above problems with respect togj , a fixed-point algorithm
may be derived. We have, for example, that

∂U

∂gj
=

∫ 1

0

dt

(

1 −
t

gj

)

eqf(t)BN,j(t);

thus, analogously to theq → 0 case above, a simple update is given by

g1
j =

∫ 1

0
teqf0(t)BN,j(t)dt

∫ 1

0
eqf0(t)BN,j(t)dt

,

which effectively corresponds to taking the mean of the binomial functionBN,j , weighted
by the “importance” termeqf(t), which in turn is controlled by the proximity oft to the
maximum off0(t) for q large. While this is an attractive strategy, conjugate gradient
descent proved to be a more stable algorithm in our hands.



Lower bounds

Once we have found an estimator with good worst-case error, we want to compare its
performance to some well-defined optimum. To do this, we obtain lower bounds on the
worst-case performance ofanyestimator (not just the class ofp̂ we minimized over in the
last section). Once again, we will derive a family of bounds indexed by some parameterα,
and then optimize overα.

Our lower bounds are based on the well-known fact that, for any proper prior distribution,
the average (Bayesian) loss is less than or equal to the maximum (worst-case) loss. The
most convenient class of priors to use here are the Dirichlet priors. Thus we will compute
the average KL error under any Dirichlet distribution (interesting in its own right), then
maximize over the possible Dirichlet priors (that is, find the “least favorable” Dirichlet
prior) to obtain the tightest lower bound on the worst-case error; importantly, the resulting
bounds will be nonasymptotic (that is, valid for allN andm). This approach therefore
generalizes the asymptotic lower bound used in (7), who examined the KL loss under the
special case of the uniform Dirichlet prior. See also (4) for direct application of this idea
to bound the average code length, and (14), who derived a lower bound on the average KL
loss, again in the uniform Dirichlet case.

We compute the Bayes error as follows. First, it is well-known (e.g., (9, 14)) that the
KL-Bayes estimate of~p given count data~n (under any prior, not just the Dirichlet) is the
posterior mean (interestingly, the KL loss shares this property with the squared error); for
the Dirichlet prior with parameter~α, this conditional mean has the particularly simple form

EDir(~α|~n)~p =
~α+ ~n

∑

i αi + ni
,

with Dir(~α|~n) denoting theDir(~α) density conditioned on data~n. Second, it is straight-
forward to show (14) that the conditional average KL error, given this estimate, has an
appealing form: the entropy at the conditional mean minus the conditional mean entropy
(one can easily check the strict positivity of this average error via the concavity of the vector
entropy functionH(~p) = −

∑

i pi log pi). Thus we can write the average loss as

EDir(~α)

»

H(
~α + ~n

P

i
αi+ni

)−EDir(~α|~n)H(~p)

–

=
X

i

EDir(~α)

»

H(
αi + ni

N+
P

i
αi

)−EDir(~α+~n)H(pi)

–

,

where the inner averages over~p are under the Dirichlet distribution and the outer averages
over ~n andni are under the corresponding Dirichlet-multinomial or Dirichlet-binomial
mixtures (i.e., multinomials whose parameter~p is itself Dirichlet distributed); we have
used linearity of the expectation,

∑

i ni = N , andDir(~α|~n) = Dir(~α + ~n). Evaluating
the right-hand side of the above, in turn, requires the formula

−EDir(α)H(pi) =
αi
∑

i αi

(

ψ(αi + 1) − ψ(1 +
∑

i

αi)

)

,

with ψ(t) = d
dt log Γ(t); recall thatψ(t + 1) = ψ(t) + 1

t . All of the above may thus be
easily computed numerically for anyN,m, and~α; to simplify, however, we will restrict~α
to be constant,~α = (α, α, . . . , α). This symmetrizes the above formulae; we can replace
the outer sum with multiplication bym, and substitute

∑

i αi = mα. Finally, abbreviating
K = N +mα, we have that the worst-case error is bounded below by:

m

K

N
∑

j=0

pα,m,N (j)(j + α)

(

− log
j + α

K
+ ψ(j + α) +

1

j + α
− ψ(K) −

1

K

)

, (1)

with pα,m,N (j) the beta-binomial distribution

pα,m,N (j) =

(

N

j

)

Γ(mα)Γ(j + α)Γ(K − (j + α))

Γ(K)Γ(α)Γ(mα− α)
.



This lower bound is valid for allN,m, andα, and can be optimized numerically in the
(scalar) parameterα in a straightforward manner.

Asymptotic analysis

In this section, we aim to understand some of the implications of the rather complicated
expressions above, by analyzing them in some simplifying limits. Due to space constraints,
we can only sketch the proof of each of the following statements.
Proposition 1. Any add-αestimator,α > 0, is uniformly KL-consistent ifN/m→ ∞.

This is a simple generalization of a result of (7), who proved consistency for the special
case ofm fixed andN → ∞; the main point here is thatN/m is allowed to tend to infinity
arbitarily slowly. The result follows on utilizing our first upper bound (the main difference
between our analysis and that of (7) is that our bound holds for allm,N , whereas (7)
focuses on the asymptotic case) and noting thatmax0≤t≤1 f(t) = O(1/N) for f(t) defined
by any add-constant estimator; hence our upper bound is uniformlyO(m/N). To obtain
theO(1/N) bound, we plug in the add-constantgj = (j + α)/N :

f(t) = α/N + t



log t−
∑

j

(log
j + α

N
)BN,j(t)



 .

For t fixed, an application of the delta method implies that the sum looks likelog(t+ α
N )−

1−t
2Nt ; an expansion of the logarithm, in turn, implies that the right-hand side converges to
1

2N (1 − t), for any fixedα > 0. On a1/N scale, on the other hand, we have

Nf(
t

N
) = α+ t



log t−
∑

j

log(j + α)BN,j(
t

N
)



 ,

which can be uniformly bounded above. In fact, as demonstrated by (7), the binomial sum
on the right-hand side converges to the corresponding Poisson sum; interestingly, a similar
Poisson sum plays a key role in the analysis of the entropy estimation case in (12).

A converse follows easily from the lower bounds developed above:
Proposition 2. No estimator is uniformly KL-consistent iflim supN/m <∞.

Of course, it is intuitively clear that we need many more thanm samples to estimate a
distribution onm bins; our contribution here is a quantitative asymptotic lower bound on
the error in the data-sparse regime. (A simpler but slightly weaker asymptotic bound may
be developed from the lower bound given in (14).) Once again, we contrast with the entropy
estimation case, where consistent estimators do exist in this regime (12).

We letN,m→ ∞,N/m→ c, 0 < c <∞. The beta-binomial distribution has meanN/m
and converges to a non-degenerate limit, which we’ll denotepα,c, in this regime. Using
Fatou’s lemma andψ(t) = log(t) − 1

2t + O
(

t−2
)

, t → ∞, we obtain the asymptotic
lower bound

1

c+ α

∞
∑

j=0

pα,c(j)(α+ j)

(

− log(α+ j) + ψ(α+ j) +
1

α+ j

)

> 0.

Also interestingly, it is easy to see that our lower bound behaves asm−1
2N (1 + o(1)) as

N/m→ ∞ for any fixed positiveα (since in this case
∑k

j=0 pα,m,N (j) → 0 for any fixed
finite k). Thus, comparing to the upper bound on the minimax error in (8), we have the
somewhat surprising fact that:
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Figure 1: Illustration of bounds and asymptotic results.N = 100, m varying. a.
Numerically- and theoretically-obtained optimal (least-favorable)α, as a function ofc =
N/m; note close agreement.b. Numerical lower bounds and theoretical approximations;
note the log-linear growth asc → 0. The j = 0 approximation is obtained by retaining
only thej = 0 term of the sum in the lower bound (1); this approximation turns out to
be sufficiently accurate in thec → 0 limit, while the (m − 1)/2N approximation is tight
as c → ∞. c. Ratio comparison of upper to lower bounds. Dashed curve is the ratio
obtained by plugging the asymptotically optimal estimator due to Braess-Sauer (8) into
our upper bound; solid-dotted curve numerically least-favorable Dirichlet estimator; black
solid curve optimized estimator. Note that curves for optimized and Braess-Sauer esti-
mators are in constant proportion, since bounds are independent ofm for c large enough.
Most importantly, note that optimized bounds are everywhere tight within a factor of2, and
asymptotically tight asc→ ∞ or c→ 0.

Proposition 3. Any fixed-αDirichlet prior is asymptotically least-favorable asNm → ∞.

This generalizes Theorem 2 of (7) (and in fact, an alternate proof can be constructed on
close examination of Krichevskiy’s proof of that result).

Finally, we examine the optimizers of the bounds in the data-sparse limit,c = N/m→ 0.

Proposition 4. The least-favorable Dirichlet parameter is given byH(c) as c → 0; the
corresponding Bayes estimator also asymptotically minimizes the upper bound (and hence
the bounds are asymptotically tight in this limit). The maximal and average errors grow as
−log(c)(1 + o(1)), c→ 0.

This is our most important asymptotic result. It suggests a simple and interesting rule of
thumb for estimating distributions in this data-sparse limit: use the add-αestimator with
α = H(c). When the data are very sparse (csufficiently small) this estimator is optimal;
see Fig. 1 for an illustration. The proof, which is longer than those of the above results but
still fairly straightforward, has been omitted due to space constraints.



Discussion

We have omitted a detailed discussion of the form of the estimators which numerically
minimize the upper bounds developed here; these estimators were empirically found to
be perturbed add-constant estimators, withgj growing linearly for largej but perturbed
downward in the approximate rangej < 10. Interestingly, in the heavily-sampled limit
N >> m, the minimizing estimator provided by (8) again turns out to be a perturbed
add-constant estimator. Further details will be provided elsewhere.

We note an interesting connection to the results of (9), who find that1/m scaling of the
add-constant parameterα is empirically optimal for for an entropy estimation application
with largem. This1/m scaling bears some resemblance to the optimalH(c) scaling that
we find here, at least on a logarithmic scale (Fig. 1a); however, it is easy to see that the extra
− log(c) term included here is useful. As argued in (3), it is a good idea, in the data-sparse
limit N << m, to assign substantial probability mass to bins which have not seen any data
samples. Since the total probability assigned to these bins by any add-αestimator scales in
this limit asP (unseen) = mα/(N +mα), it is clear that the choiceα ∼ 1/m decays too
quickly.

Finally, we note an important direction for future research: the upper bounds developed
here turn out to be least tight in the rangeN ≈ m, when the optimum in the bound occurs
neart = 1/m; in this case, our bounds can be loose by roughly a factor of two (exactly
the degree of looseness we found in Fig. 1c). Thus it would be quite worthwhile to explore
upper bounds which are tight in thisN ≈ m range.
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