Convergence and No-Regret in M ultiagent
L earning

Michael Bowling
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2E8
bow i ng@s. ual berta. ca

Abstract

Learning in a multiagent system is a challenging problem due to two key
factors. First, if other agents are simultaneously learning then the envi-
ronment is no longer stationary, thus undermining convergence guaran-
tees. Second, learning is often susceptible to deception, where the other
agents may be able to exploit a learner’s particular dynamics. In the
worst case, this could result in poorer performance than if the agent was
not learning at all. These challenges are identifiable in the two most com-
mon evaluation criteria for multiagent learning algorithms: convergence
and regret. Algorithms focusing on convergence or regret in isolation
are numerous. In this paper, we seek to address both criteria in a single
algorithm by introducing GIGA-WOoLF, a learning algorithm for normal-
form games. We prove the algorithm guarantees at most zero average
regret, while demonstrating the algorithm converges in many situations
of self-play. We prove convergence in a limited setting and give empir-
ical results in a wider variety of situations. These results also suggest
a third new learning criterion combining convergence and regret, which
we call negative non-convergence regret (NNR).

1 Introduction

Learning to select actions to achieve goals in a multiagent setting requires overcoming a
number of key challenges. One of these challenges is the loss of the stationarity assumption
when multiple agents are learning simultaneously. Another challenge is guaranteeing that
the learner cannot be deceptively exploited by another agent. Both of these challenges dis-
tinguish the multiagent learning problem from traditional single-agent learning, and have
been gaining recent attention as multiagent applications continue to proliferate.

In single-agent learning tasks, it is reasonable to assume that the same action from the
same state will result in the same distribution over outcomes, both rewards and next states.
In other words, the environment is stationary. In a multiagent task with other learning
agents, the outcomes of an agent’s action will vary with the changing policies of the other
agents. Since most of the convergence results in reinforcement learning depend upon the
environment being stationary, convergence is often difficult to obtain in multiagent settings.



The desirability of convergence has been recently contested. We offer some brief insight
into this debate in the introduction of the extended version of this paper [1].

Equilibrium learners [2, 3, 4] are one method of handling the loss of stationarity. These al-
gorithms learn joint-action values, which are stationary, and in certain circumstances guar-
antee these values converge to Nash (or correlated) equilibrium values. Using these values,
the player’s strategy corresponds to the player’s component of some Nash (or correlated)
equilibrium. This convergence of strategies is guaranteed nearly independently of the ac-
tions selected by the other agents, including when other agents play suboptimal responses.
Equilibrium learners, therefore, can fail to learn best-response policies even against simple
non-learning opponents.® Best-response learners [5, 6, 7] are an alternative approach that
has sought to learn best-responses, but still considering whether the resulting algorithm
converges in some form. These approaches usually examine convergence in self-play, and
have included both theoretical and experimental results.

The second challenge is the avoidance of exploitation. Since learning strategies dynami-
cally change their action selection over time, it is important to know that the change cannot
be exploited by a clever opponent. A deceptive strategy may “lure” a dynamic strategy
away from a safe choice in order to switch to a strategy where the learner receives much
lower reward. For example, Chang and Kaelbling [8] demonstrated that the best-response
learner PHC [7] could be exploited by a particular dynamic strategy. One method of mea-
suring whether an algorithm can be exploited is the notion of regret. Regret has been
explored both in game theory [9] and computer science [10, 11]. Regret measures how
much worse an algorithm performs compared to the best static strategy, with the goal to
guarantee at least zero average regret, no-regret, in the limit.

These two challenges result in two completely different criteria for evaluation: conver-
gence and no-regret. In addition, they have almost exclusively been explored in isolation.
For example, equilibrium learners can have arbitrarily large average regret. On the other
hand, no-regret learners’ strategies rarely converge in self-play [12] in even the simplest
of games.? In this paper, we seek to explore these two criteria in a single algorithm for
learning in normal-form games. In Section 2 we present a more formal description of the
problem and the two criteria. We also examine key related work in applying gradient ascent
algorithms to this learning problem. In Section 3 we introduce GIGA-WoLF, an algorithm
with both regret and convergence properties. The algorithm is followed by theoretical and
experimental analyses in Sections 4 and 5, respectively, before concluding.

2 OnlineLearningin Games

A game in normal form is a tuple, (n, A1, ., R1...»), Where n is the number of players in
the game, A, is a set of actions available to player i (4 = A; x...xA4,),and R; : A — R
is a mapping from joint actions to player ¢’s reward. The problem of learning in a normal-
form game is one of repeatedly selecting an action and receiving a reward, with a goal of
maximizing average reward against an unknown opponent. If there are two players then it
is convenient to write a player’s reward function as a |.A;| x |.Az| matrix. Three example
normal-form games are shown in Table 1.

Unless stated otherwise we will assume the learning algorithm is player one. In the context
of a particular learning algorithm and a particular opponent, let 7, € R4l be the vector
of actual rewards that player one would receive at time ¢ for each of its actions. Let z; €

1This work is not restricted to zero-sum games and our use of the word “opponent” refers simply
to other players in the game.

2A notable exception is Hart and Mas-Colell’s algorithm that guarantees the empirical distribu-
tion of play converges to that of a correlated equilibrium. Neither strategies nor expected values
necessarily converge, though.



Table 1: Examples of games in normal-form.
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(a) Matching Pennies (b) Tricky Game (c) Rock—Paper-Scissors

PD(A;) be the algorithm’s strategy at time ¢, selected from probability distributions over
actions. So, player one’s expected payoff at time ¢ is (r; - x;). Let 1, be the probability
distribution that assigns probability 1 to action a € A;. Lastly, we will assume the reward
for any action is bounded by 7., and therefore ||r;||? < |A;|r?

max*

2.1 Evaluation Criteria

One common evaluation criterion for learning in normal-form games is convergence. There
are a number of different forms of convergence that have been examined in the literature.
These include, roughly increasing in strength: average reward (i.e., > (r; - x¢)/T), empir-
ical distribution of actions (i.e., > x;/T), expected reward (i.e., (r; - z;)), and strategies
(i.e., z¢). We focus in this paper on convergence of strategies as this implies the other three
forms of convergence as well. In particular, we will say an algorithm converges against a
particular opponent if and only if lim;_. o x; = ..

The second common evaluation criterion is regret. Total regret® is the difference between
the maximum total reward of any static strategy given the past history of play and the
algorithm’s total reward.

T
Rr = max ((re - 1a) = (re - a1))

t=1
Average regret is just the asymptotic average of total regret, limy_,, R /T. An algorithm
has no-regret if and only if the average regret is less than or equal to zero against all op-
ponent strategies. The no-regret property makes a strong claim about the performance of
the algorithm: the algorithm’s expected average reward is at least as large as the expected
average award any static strategy could have achieved. In other words, the algorithm is
performing at least as well as any static strategy.

2.2 Gradient Ascent Learning

Gradient ascent is a simple and common technique for finding parameters that optimize
a target function. In the case of learning in games, the parameters represent the player’s
strategy, and the target function is expected reward. We will examine three recent results
evaluating gradient ascent learning algorithms in normal-form games.

Singh, Kearns, and Mansour [6] analyzed gradient ascent (IGA) in two-player, two-action
games, e.g., Table 1(a) and (b). They examined the resulting strategy trajectories and pay-
offs in self-play, demonstrating that strategies do not always converge to a Nash equilib-
rium, depending on the game. They proved, instead, that average payoffs converge (a

30ur analysis focuses on expectations of regret (total and average), similar to [10, 11]. Although
note that for any self-oblivious behavior, including GIGA-WoLF, average regret of at most zero on
expectation implies universal consistency, i.e., regret of at most ¢ with high probability [11].



weaker form of convergence) to the payoffs of the equilibrium. WoLF-IGA [7] extended
this work to the stronger form of convergence, namely convergence of strategies, through
the use of a variable learning rate. Using the WoLF (“Win or Learn Fast”) principle, the al-
gorithm would choose a larger step size when the current strategy had less expected payoff
than the equilibrium strategy. This results in strategies converging to the Nash equilibrium
in a variety of games including all two-player, two-action games.* Zinkevich [11] looked
at gradient ascent using the evaluation criterion of regret. He first extended IGA beyond
two-player, two-action games. His algorithm, GIGA (Generalized Infinitesimal Gradient
Ascent), updates strategies using an unconstrained gradient, and then projects the resulting
strategy vector back into the simplex of legal probability distributions,

Tiy1 = Pz + mere) where  P(x) = argmin ||z — '], 1)
z’€PD(A1)
7 1S the stepsize at time ¢, and || - || is the standard L2 norm. He proved GIGA’s total regret

is bounded by,
Rr < VT + A2, (VT —1/2). )

Since GIGA is identical to IGA in two-player, two-action games, we also have that GIGA
achieves the weak form of convergence in this subclass of games. It is also true, though,
that GIGA’s strategies do not converge in self-play even in simple games like matching
pennies.

In the next section, we present an algorithm that simultaneously achieves GIGA’s no-regret
result and part of WoLF-1GA’s convergence result. We first present the algorithm and then
analyze these criteria both theoretically and experimentally.

3 GIGA-WoLF

GIGA-WOoLF is a gradient based learning algorithm that internally keeps track of two dif-
ferent gradient-updated strategies, x; and z;. The algorithm chooses actions according to
the distribution x;, but updates both x, and z, after each iteration. The update rules consist
of three steps.

(1) £t+1 = P(l’t-f—T]t’f't)
(2) 241 = Pzt +mre/3)

041 = min <1 —HZtH*Z"’H )

2t — Tegall
(3) w1 = Fps1 + 01 (Zi41 — Teg1)

Step (1) updates x; according to GIGA’s standard gradient update and stores the result as
Z¢y1. Step (2) updates z; in the same manner, but with a smaller step-size. Step (3) makes
a final adjustment on x;,; by moving it toward z;, 1. The magnitude of this adjustment is
limited by the change in z; that occurred in step (2).

A key factor in understanding this algorithm is the observance that a strategy a receives
higher reward than a strategy b if and only if the gradient at « is in the direction of b (i.e.,
ry - (b — a) > 0). Therefore, the step (3) adjustment is in the direction of the gradient
if and only if z; received higher reward than z;. Notice also that, as long as x; is not
near the boundary, the change due to step (3) is of lower magnitude than the change due

“WOLF-IGA may, in fact, be a limited variant of the extragradient method [13] for variational
inequality problems. The extragradient algorithm is guaranteed to converge to a Nash equilibrium
in self-play for all zero-sum games. Like WoLF-IGA, though, it does not have any known regret
guarantees, but more importantly requires the other players’ payoffs to be known.



to step (1). Hence, the combination of steps (1) and (3) result in a change with two key
properties. First, the change is in the direction of positive gradient. Second, the magnitude
of the change is larger when z, received higher reward than z;. So, we can interpret the
update rule as a variation on the WoLF principle of “win or learn fast”, i.e., the algorithm is
learning faster if and only if its strategy « is losing to strategy z. GIGA-WOLF is a major
improvement on the original presentation of WoLF-IGA, where winning was determined
by comparison with an equilibrium strategy that was assumed to be given. Not only is less
knowledge required, but the use of a GIGA-updated strategy to determine winning will
allow us to prove guarantees on the algorithm’s regret.

In the next section we present a theoretical examination of GIGA-WoLF’s regret in n-
player, n-action games, along with a limited guarantee of convergence in two-player, two-
action games. In Section 5, we give experimental results of learning using GIGA-WoLF,
demonstrating that convergence extends beyond the theoretical analysis presented.

4 Theoretical Analysis

We begin by examining GIGA-WoLF’s regret against an unknown opponent strategy. We
will prove the following bound on average regret.

Theorem 1 If , = 1/v/1, the regret of GIGA-WOLF is,
Ry < 2VT + |Alr2, . 2VT - 1).
Therefore, limy_. . R /T < 0, hence GIGA-WoLF has no-regret.

Proof. We begin with a brief overview of the proof. We will find a bound on the regret of
the strategy x; with respect to the dynamic strategy z;. Since z; is unmodified GIGA, we
already have a bound on the regret of z; with respect to any static strategy. Hence, we can
bound the regret of x; with respect to any static strategy.

We start by examining the regret of x; with respect to z; using a similar analysis as used
by Zinkevich [11]. Let pi—~ refer to the difference in expected payoff between z; and x;
at time ¢, and R%5~* be the sum of these differences, i.e., the total regret of z; with respect
to Zt,

T
r—Zz r—z — T—Z
Pt =71 (20— T) Rt :E Py -
t=1

We will use the following potential function, ®; = (z; — 2;)?/2n;. We can examine how
this potential changes with each step of the update. A®;, A®Z, and A®? refers to the
change in potential caused by steps (1), (2), and (3), respectively. Ad# refers to the change
in potential caused by the learning rate change from 7, _; to n;. This gives us the following
equations for the potential change.

AR = 1/20((Bes1 — 20) — (20 — 20)°)
AD = 1/20:((Z041 — 241)° — (Bea1 — 20)7)
AP} = 120 (241 — 2e01)° — (Beg1 — 2e41)°)
APy = (1/2m1 — 1/200) (241 — 2041)°
Ady = Adp .y + AP, +AGY, + Ady

Notice that if 6,1 = 1then zy41 = z,41. Hence &, = 0, and A®7 , + A7, < 0.
If 041 < 1, then ||zs41 — Ze11]| = [|ze41 — 2¢||. Notice also that in this case z.; is



co-linear and between %, and z;,1. So,
[Zt+1 — ze1ll = (&40 — Dol + (2001 — 2041l
= Nats1 — 2ol + llzer1 — 2041
We can bound the left with the triangle inequality,
[[Ze41 — zesall < |[Bea1 — 2el[ + (|20 — 2ze41]]
[[Te41 — zeal] < (|41 — 2]
So regardless of 6,41, A®Z, | + A®F | < 0. Hence, Ady, 1 < Ady,, + ADY .

We will now use this bound on the change in the potential to bound the regret of z; with
respect to z;. We know from Zinkevich that,

(T141 — 20) — (mp — 2¢)® < 2mery - (20 — ) + 77

Therefore,
—z ]‘ P
P77 < g (s = 2)” = (@ — =) 1))
Tt
< AL H1/2nr] < AP + ADL + 1/ 207

Since we assume rewards are bounded by 7., We can bound 72 by |A|r2 .. Summing up
regret and using the fact that 5, = 1/+/¢, we get the following bound.

T
R < ZfACI)t+A<I>f+%|A|r2

max

t=1
1 A2,
< _ - 17717 max
< (P (I)T)+(77T 1)+ 5 t:Zl??f,
< VT + A2, (VT —1/2)

We know that GIGA’s regret with respect to any strategy is bounded by the same value (see
Inequality 2). Hence,
Ry < 2VT + |Alr2, (2VT — 1),

as claimed. 0

The second criterion we want to consider is convergence. As with IGA, WoLF-IGA, and
other algorithms, our theoretical analysis will be limited to two-player, two-action general-
sum games. We further limit ourselves to the situation of GIGA-WoLF playing “against”
GIGA. These restrictions are a limitation of the proof method, which uses a case-by-case
analysis that is combinatorially impractical for the case of self-play. This is not necessarily
a limitation on GIGA-WoLF’s convergence. This theorem along with the empirical results
we present later in Section 5 give a strong sense of GIGA-WOLF’s convergence properties.
The full proof can be found in [1].

Theorem 2 In a two-player, two-action repeated game, if one player follows the GIGA-
WOoLF algorithm and the other follows the GIGA algorithm, then their strategies will con-
verge to a Nash equilibrium.

5 Experimental Analysis

We have presented here two theoretical properties of GIGA-WOLF relating to guarantees
on both regret and convergence. There have also been extensive experimental results per-
formed on GIGA-WoLF in a variety of normal-form games [1]. We summarize the results



here. The purpose of these experiments was to demonstrate the theoretical results from the
previous section as well as explore the extent to which the results (convergence, in partic-
ular) can be generalized. In that vein, we examined the same suite of normal-form games
used in experiments with WoLLF-PHC, the practical variant of WoLF-IGA [7].

One of the requirements of GIGA-WoLF (and GIGA) is knowledge of the entire reward
vector (r;), which requires knowledge of the game and observation of the opponent’s ac-
tion. In practical situations, one or both of these are unlikely to be available. Instead, only
the reward of the selected action is likely to be observable. We have relaxed this require-
ment in these experiments by providing GIGA-WoLF (and GIGA) with only estimates of
the gradient from stochastic approximation. In particular, after selecting action « and re-
ceiving reward 7,, we update the current estimate of action a’s component of the reward
vector, rp41 = 14 + ai(Fq — 14 - 74) 14, Where o is the learning rate. This is a standard
method of estimation commonly used in reinforcement learning (e.g., Q-learning).

For almost all of the games explored, including two-player, two-action games as well as
n-action zero-sum games, GIGA-WoLF strategies converged in self-play to equilibrium
strategies of the game. GIGA’s strategies, on the other hand, failed to converge in self-play
over the same suite of games. These results are nearly identical to the PHC and WoLF-PHC
experiments over the same games. A prototypical example of these results is provided in
Figure 1(a) and (b), showing strategy trajectories while learning in Rock-Paper-Scissors.
GIGA’s strategies do not converge, while GIGA-WoLF’s strategies do converge. GIGA-
WOLF also played directly against GIGA in this game resulting in convergence, but with
a curious twist. The resulting expected and average payoffs are shown in Figure 1(c).
Since both are no-regret learners, average payoffs are guaranteed to go to zero, but the
short-term payoff is highly favoring GIGA-WoLF. This result raises an interesting question
about the relative short-term performance of no-regret learning algorithms, which needs to
be explored further.

Average Reward
Expected Reward -

o | 0.08
%os6 iy T0.04
g | F
=0.4 Tl ke 0
a
0.2 1 -0.04
0 0 -0.08
0 02 04 06 08 1 0 02 04 06 08 1 0 500000 1le+06
Pr(Rock) Pr(Rock) Iterations
() GIGA (b) GIGA-WoLF (c) GIGA v. GIGA-WoLF

Figure 1: Trajectories of joint strategies in Rock-Paper-Scissors when both players use
GIGA (a) or GIGA-WoLF (b). Also shown (c) are the expected and average payoffs of the
players when GIGA and GIGA-WoLF play against each other.

GIGA-WoLF did not lead to convergence in all of the explored games. The “problematic”
Shapley’s game, for which many similarly convergent algorithms fail in, also resulted in
non-convergence for GIGA-WoLF. On the other hand, this game has the interesting prop-
erty that both players’ when using GIGA-WoLF (or GIGA) actually achieve negative regret.
In other words, the algorithms are outperforming any static strategy to which they could
converge upon. This suggests a new desirable property for future multiagent (or online)
learning algorithms, negative non-convergence regret (NNR). An algorithm has NNR, if it
satisfies the no-regret property and either (i) achieves negative regret or (ii) its strategy con-
verges. This property combines the criteria of regret and convergence, and GIGA-WOLF is
a natural candidate for achieving this compelling result.



6 Conclusion

We introduced GIGA-WOLF, a new gradient-based algorithm, that we believe is the first
to simultaneously address two criteria: no-regret and convergence. We proved GIGA-
WOoLF has no-regret. We also proved that in a small class of normal-form games, GIGA-
WOLF’s strategy when played against GIGA will converge to a Nash equilibrium. We
summarized experimental results of GIGA-WoLF playing in a variety of zero-sum and
general-sum games. These experiments verified our theoretical results and exposed two
interesting phenomenon that deserve further study: short-term performance of no-regret
learners and the new desiderata of negative non-convergence regret. We expect GIGA-
WOoLF and these results to be the foundation for further understanding of the connections
between the regret and convergence criteria.
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