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Abstract 

This paper presents a neuromorphic model of two olfactory signal-
processing primitives: chemotopic convergence of olfactory 
receptor neurons, and center on-off surround lateral inhibition in 
the olfactory bulb. A self-organizing model of receptor 
convergence onto glomeruli is used to generate a spatially 
organized map, an olfactory image. This map serves as input to a 
lattice of spiking neurons with lateral connections. The dynamics 
of this recurrent network transforms the initial olfactory image into 
a spatio-temporal pattern that evolves and stabilizes into odor- and 
intensity-coding attractors. The model is validated using 
experimental data from an array of temperature-modulated gas 
sensors. Our results are consistent with recent neurobiological 
findings on the antennal lobe of the honeybee and the locust.   

1  Introduction 
An artificial olfactory system comprises of an array of cross-selective chemical 
sensors followed by a pattern recognition engine. An elegant alternative for the 
processing of sensor-array signals, normally performed with statistical pattern 
recognition techniques [1], involves adopting solutions from the biological olfactory 
system. The use of neuromorphic approaches provides an opportunity for 
formulating new computational problems in machine olfaction, including mixture 
segmentation, background suppression, olfactory habituation, and odor-memory 
associations.  

A biologically inspired approach to machine olfaction involves (1) identifying key 
signal processing primitives in the olfactory pathway, (2) adapting these primitives 
to account for the unique properties of chemical sensor signals, and (3) applying the 
models to solving specific computational problems.  



 

 

The biological olfactory pathway can be divided into three general stages: (i) 
olfactory epithelium, where primary reception takes place, (ii) olfactory bulb (OB), 
where the bulk of signal processing is performed and, (iii) olfactory cortex, where 
odor associations are stored.  A review of literature on olfactory signal processing 
reveals six key primitives in the olfactory pathway that can be adapted for use in 
machine olfaction. These primitives are: (a) chemical transduction into a 
combinatorial code by a large population of olfactory receptor neurons (ORN), (b) 
chemotopic convergence of ORN axons onto glomeruli (GL), (c) logarithmic 
compression through lateral inhibition at the GL level by periglomerular 
interneurons, (d) contrast enhancement through lateral inhibition of mitral (M) 
projection neurons by granule interneurons, (e) storage and association of odor 
memories in the piriform cortex, and (f) bulbar modulation through cortical 
feedback [2, 3].  

This article presents a model that captures the first three abovementioned 
primitives: population coding, chemotopic convergence and contrast enhancement.  
The model operates as follows.  First, a large population of cross-selective pseudo-
sensors is generated from an array of metal-oxide (MOS) gas sensors by means of 
temperature modulation.  Next, a self-organizing model of convergence is used to 
cluster these pseudo-sensors according to their relative selectivity.  This clustering 
generates an initial spatial odor map at the GL layer. Finally, a lattice of spiking 
neurons with center on-off surround lateral connections is used to transform the GL 
map into identity- and intensity-specific attractors. 

The model is validated using a database of temperature-modulated sensor patterns 
from three analytes at three concentration levels. The model is shown to address the 
first problem in biologically-inspired machine olfaction: intensity and identity 
coding of a chemical stimulus in a manner consistent with neurobiology [4, 5]. 

2  Modeling chemotopic convergence 

The projection of sensory signals onto the olfactory bulb is organized such that 
ORNs expressing the same receptor gene converge onto one or a few GLs [3]. This 
convergence transforms the initial combinatorial code into an organized spatial 
pattern (i.e., an olfactory image). In addition, massive convergence improves the 
signal to noise ratio by integrating signals from multiple receptor neurons [6].  
When incorporating this principle into machine olfaction, a fundamental difference 
between the artificial and biological counterparts must be overcome: the input 
dimensionality at the receptor/sensor level. The biological olfactory system employs 
a large population of ORNs (over 100 million in humans, replicated from 1,000 
primary receptor types), whereas its artificial analogue uses a few chemical sensors 
(commonly one replica of up to 32 different sensor types).  

To bridge this gap, we employ a sensor excitation technique known as temperature 
modulation [7].  MOS sensors are conventionally driven in an isothermal fashion by 
maintaining a constant temperature. However, the selectivity of these devices is a 
function of the operating temperature. Thus, capturing the sensor response at 
multiple temperatures generates a wealth of additional information as compared to 
the isothermal mode of operation. If the temperature is modulated slow enough 
(e.g., mHz), the behavior of the sensor at each point in the temperature cycle can 
then be treated as a pseudo-sensor, and thus used to simulate a large population of 
cross-selective ORNs (refer to Figure 1(a)).  

To model chemotopic convergence, these temperature-modulated pseudo-sensors 
(referred to as ORNs in what follows) must be clustered according to their 



 

 

selectivity [8]. As a first approximation, each ORN can be modeled by an affinity 
vector [9] consisting of the responses across a set of C analytes: 
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where a
iK  is the response of the ith  ORN to analyte a.  The selectivity of this ORN 

is then defined by the orientation of the affinity vector iΚ
r

. 

A close look at the OB also shows that neighboring GLs respond to similar odors 
[10]. Therefore, we model the ORN-GL projection with a Kohonen self-organizing 
map (SOM) [11]. In our model, the SOM is trained to model the distribution of 
ORNs in chemical sensitivity space, defined by the affinity vector iΚ

r
.  Once the 

training of the SOM is completed, each ORN is assigned to the closest SOM node (a 
simulated GL) in affinity space, thereby forming a convergence map. The response 
of each GL can then be computed as 
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where a
iORN is the response of pseudo-sensor i to analyte a, Wij=1 if pseudo-sensor i 

converges to GL j and zero otherwise, and ( )⋅σ  is a squashing sigmoidal function 
that models saturation.  

This convergence model works well under the assumption that the different sensory 
inputs are reasonably uncorrelated. Unfortunately, most gas sensors are extremely 
collinear.  As a result, this convergence model degenerates into a few dominant GLs 
that capture most of the sensory activity, and a large number of dormant GLs that do 
not receive any projections. To address this issue, we employ a form of competition 
known as conscience learning [12], which incorporates a habituation mechanism to 
prevent certain SOM nodes from dominating the competition.  In this scheme, the 
fraction of times that a particular SOM node wins the competition is used as a bias 
to favor non-winning nodes. This results in a spreading of the ORN projections to 
neighboring units and, therefore, significantly reduces the number of dormant units. 

We measure the performance of the convergence mapping with the entropy across 
the lattice, ∑−= ii PPH log , where Pi is the fraction of ORNs that project to SOM 
node i [13].  To compare Kohonen and conscience learning, we built convergence 
mappings with 3,000 pseudo-sensors and 400 GL units (refer to section 4 for 
details). The theoretical maximum of the entropy for this network, which 
corresponds to a uniform distribution, is 8.6439. When trained with Kohonen’s 
algorithm, the entropy of the SOM is 7.3555.  With conscience learning, the entropy 
increases to 8.2280. Thus, conscience is an effective mechanism to improve the 
spreading of ORN projections across the GL lattice. 

3  Modeling the olfactory bulb network 

Mitral cells, which synapse ORNs at the GL level, transform the initial olfactory 
image into a spatio-temporal code by means of lateral inhibition. Two roles have 
been suggested for this lateral inhibition: (a) sharpening of the molecular tuning 
range of individual M cells with respect to that of their corresponding ORNs [10], 
and (b) global redistribution of activity, such that the bulb-wide representation of an 
odorant, rather than the individual tuning ranges, becomes specific and concise over 
time [3]. More recently, center on-off surround inhibitory connections have been 
found in the OB [14]. These circuits have been suggested to perform pattern 
normalization, noise reduction and contrast enhancement of the spatial patterns. 



 

 

We model each M cell using a leaky integrate-and-fire spiking neuron [15]. The 
input current I(t) and change in membrane potential u(t) of a neuron are given by: 
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Each M cell receives current Iinput from ORNs and current Ilateral from lateral 
connections with other M cells: 
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where Wij indicates the presence/absence of a synapse between ORNi and Mj, as 
determined by the chemotopic mapping, Lkj is the efficacy of the lateral connection 
between Mk and Mj, and α(k,t-1) is the post-synaptic current generated by a spike at 
Mk: 
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g(k,t-1) is the conductance of the synapse between Mk and Mj at time t-1, u(j,t-1) is 
the membrane potential of Mj at time t-1 and the + subscript indicates this value 
becomes zero if negative, and Esyn is the reverse synaptic potential.  The change in 
conductance of post-synaptic membrane is: 
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where z(.) and g(.) are low pass filters of the form exp(-t/τsyn) and )/exp( syntt τ−⋅ ,  
respectively, τsyn is the synaptic time constant, gnorm is a normalization constant, and 
spk(j,t) marks the occurrence of a spike in neuron i at time t: 
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Combining equations (3) and (4), the membrane potential can be expressed as: 
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When the membrane potential reaches Vthreshold, a spike is generated, and the 
membrane potential is reset to Vrest. Any further inputs to the neuron are ignored 
during the subsequent refractory period.  

Following [14], lateral interactions are modeled with a center on-off surround 
matrix Lij.  Each M cell makes excitatory synapses to nearby M cells (d<de), where 
d is the Manhattan distance measured in the lattice, and inhibitory synapses with 



 

 

distant M cells (de<d<di) through granule cells (implicit in our model). Excitatory 
synapses are assigned uniform random weights between [0, 0.1].  Inhibitory 
synapses are assigned negative weights in the same interval.  Model parameters are 
summarized in Table 1.   

Table 1. Parameters of the OB spiking neuron lattice 

Parameter Value Parameter Value 
Peak synaptic conductance (Gpeak)  0.01 Synaptic time constants (τsyn)  10 ms 
Capacitance (C) 1 nF Total simulation time (ttot)  500 ms 
Resistance (R) 10 MOhm Integration time step (dt)  1 ms 
Spike voltage (Vspike) 70 mV Refractory period (tref)  3 ms 
Threshold voltage (Vthreshold) 5 mV Number of mitral cells (N)  400 
Synapse Reverse potential (Esyn) 70 mV Normalization constant (gnorm) 0.0027 

Excitatory distance (de) Nd
6

1
<  Inhibitory distance (di) NdN

6

2

6

1
<<  

4  Results  
The proposed model is validated on an experimental dataset containing gas sensor 
signals for three analytes: acetone (A), isopropyl alcohol (B) and ammonia (C), at 
three different concentration levels per analyte. Two Figaro MOS sensors (TGS 
2600, TGS 2620) were temperature modulated using a sinusoidal heater voltage (0-7 
V; 2.5min period; 10Hz sampling frequency). The response of the two sensors to the 
three analytes at the three concentration levels is shown in Figure 1(a). This 
response was used to generate a population of 3,000 ORNs, which were then 
mapped onto a GL layer with 400 units arranged as a 20×20 lattice.  

Pseudo-Sensors

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

2 4 6 8 10 12 14 16 18 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

A1 A2 A3

B1 B3B2

C1 C2 C3

Concentration 

500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Se
ns

or
 c

on
du

ct
an

ce
(A

ce
to

ne
)

A3

A2

A1

500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Se
ns

or
 C

on
du

ct
an

ce
(Is

o-
pr

op
yl

 a
lc

oh
ol

B3

B2

B1

500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Se
ns

or
 C

on
du

ct
an

ce
(A

m
m

on
ia

) C3

C2

C1

Sensor 1 Sensor 2

(a) (b)  
Figure 1. (a) Temperature modulated response to the three analytes (A,B,C) at three 
concentrations (A3: highest concentration of A), and (b) initial GL maps. 

The sensor response to the highest concentration of each analyte was used to 
generate the SOM convergence map. Figure 1(b) shows the initial odor map of the 
three analytes following conscience learning of the SOM. These olfactory images 
show that the identity of the stimulus is encoded by the spatial pattern across the 
lattice, whereas the intensity is encoded by the overall amplitude of this pattern. 



 

 

Analytes A and B, which induce similar responses on the MOS sensors, also lead to 
very similar GL maps. 

The GL maps are input to the lattice of spiking neurons for further processing. As a 
result of the dynamics induced by the recurrent connections, these initial maps are 
transformed into a spatio-temporal pattern. Figure 2 shows the projection of 
membrane potential of the 400 M cells along their first three principal components. 
Three trajectories are shown per analyte, which correspond to the sensor response to 
the highest analyte concentration on three separate days of data collection. These 
results show that the spatio-temporal pattern is robust to the inherent drift of 
chemical sensors. The trajectories originate close to each other, but slowly migrate 
and converge into unique odor-specific attractors. It is important to note that these 
trajectories do not diverge indefinitely, but in fact settle into an attractor, as 
illustrated by the insets in Figure 2. 
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Figure 2. Odor-specific attractors from experimental sensor data.  Three trajectories 
are shown per analyte, corresponding to the sensor response on three separate days. 
These results show that the attractors are repeatable and robust to sensor drift.  

To illustrate the coding of identity and intensity performed by the model, Figure 3 
shows the trajectories of the three analytes at three concentrations. The OB network 
activity evolves to settle into an attractor, where the identity of the stimulus is 
encoded by the direction of the trajectory relative to the initial position, and the 
intensity is encoded by the length along the trajectory.  This emerging code is also 
consistent with recent findings in neurobiology, as discussed next. 

5  Discussion 

A recent study of spatio-temporal activity in projection neurons (PN) of the 
honeybee antennal lobe (analogous to M cells in mammalian OB) reveals evolution 
and convergence of the network activity into odor-specific attractors [4].  Figure 
4(a) shows the projection of the spatio-temporal response of the PNs along their 
first three principal components. These trajectories begin close to each other, and 
evolve over time to converge into odor specific regions. These experimental results 
are consistent with the attractor patterns emerging from our model.  Furthermore, an 
experimental study of odor identity and intensity coding in the locust show 



 

 

hierarchical groupings of spatio-temporal PN activity according to odor identity, 
followed by odor intensity [5].  Figure 4(b) illustrates this grouping in the activity 
of 14 PNs when exposed to three odors at five concentrations. Again, these results 
closely resemble the grouping of attractors in our model, shown in Figure 3.  
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Figure 3. Identity and intensity coding using dynamic attractors. 

Previous studies by Pearce et al. [6] using a large population of optical micro-bead 
chemical sensors have shown that massive convergence of sensory inputs can be 
used to provide sensory hyperacuity by averaging out uncorrelated noise. In 
contrast, the focus of our work is on the coding properties induced by chemotopic 
convergence. Our model produces an initial spatial pattern or olfactory image, 
whereby odor identity is coded by the spatial activity across the GL lattice, and odor 
intensity is encoded by the amplitude of this pattern. Hence, the bulk of the 
identity/intensity coding is performed by this initial convergence primitive.  

Subsequent processing by a lattice of spiking neurons introduces time as an 
additional coding dimension. The initial spatial maps are transformed into a spatio-
temporal pattern by means of center on-off surround lateral connections.  Excitatory 
lateral connections allow the model to spread M cell activity, and are responsible for 
moving the attractors away from their initial coordinates. In contrast, inhibitory 
connections ensure that these trajectories eventually converge onto an attractor, 
rather than diverge indefinitely. It is the interplay between excitatory and inhibitory 
connections that allows the model to enhance the initial coding produced by the 
chemotopic convergence mapping. 
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Figure 4. (a) Odor trajectories formed by spatio-temporal activity in the honeybee 
AL (adapted from [4]). (b) Identity and intensity clustering of spatio-temporal 
activity in the locust AL (adapted from [5]; arrows indicate the direction of 
increasing concentration). 



 

 

At present, our model employs a center on-off surround kernel that is constant 
throughout the lattice. Further improvements can be achieved through adaptation of 
these lateral connections by means of Hebbian and anti-Hebbian learning. These 
extensions will allow us to investigate additional computational functions (e.g., 
pattern completion, orthogonalization, coding of mixtures) in the processing of 
information from chemosensor arrays.  
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