PAC-Bayesian Generic Chaining

Jean-yves Audibert, Olivier Bousquet

Advances in Neural Information Processing Systems 16 (NIPS 2003)

There exist many different generalization error bounds for classification. Each of these bounds contains an improvement over the others for cer- tain situations. Our goal is to combine these different improvements into a single bound. In particular we combine the PAC-Bayes approach intro- duced by McAllester [1], which is interesting for averaging classifiers, with the optimal union bound provided by the generic chaining technique developed by Fernique and Talagrand [2]. This combination is quite nat- ural since the generic chaining is based on the notion of majorizing mea- sures, which can be considered as priors on the set of classifiers, and such priors also arise in the PAC-bayesian setting.