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Abstract 
We propose an information-theoretic clustering approach that 
incorporates a pre-known partition of the data, aiming to identify 
common clusters that cut across the given partition.  In the standard 
clustering setting the formation of clusters is guided by a single 
source of feature information.  The newly utilized pre-partition 
factor introduces an additional bias that counterbalances the impact 
of the features whenever they become correlated with this known 
partition.  The resulting algorithmic framework was applied 
successfully to synthetic data, as well as to identifying text-based 
cross-religion correspondences. 

1 Introduct ion 
The standard task of feature-based data clustering deals with a single set of elements 
that are characterized by a unified set of features.  The goal of the clustering task is 
to identify implicit constructs, or themes, within the clustered set, grouping together 
elements that are characterized similarly by the features.  In recent years there has 
been growing interest in more complex clustering settings, in which additional 
information is incorporated [1], [2].  Several such extensions ([3]-[5]) are based on 
the information bottleneck (IB) framework [6], which facilitates coherent 
information-theoretic representation of different information types. 

In a recent line of research we have investigated the cross-dataset clustering task 
[7], [8].  In this setting, some inherent a-priori partition of the clustered data to 
distinct subsets is given.  The clustering goal it to identify corresponding 
(analogous) structures that cut across the different subsets, while ignoring internal 
structures that characterize individual subsets.  To accomplish this task, those 
features that commonly characterize elements across the different subsets guide the 
clustering process, while within-subset regularities are neutralized.   

In [7], we presented a distance-based hard clustering algorithm for the coupled- 
clustering problem, in which the clustered data is pre-partitioned to two subsets.  In 
[8], our setting, generalized to pre-partitions of any number of subsets, was 
addressed by a heuristic extension of the probabilistic IB algorithm, yielding 
improved empirical results.  Specifically, the algorithm in [8] was based on a 



 

modification of the IB stable-point equation, which amplified the impact of features 
characterizing a formed cluster across all, or most, subsets. 

This paper describes an information-theoretic framework that motivates and extends 
the algorithm proposed in [8].  The given pre-partitioning is represented via a 
probability distribution variable, which may represent “soft” pre-partitioning of the 
data, versus the strictly disjoint subsets assumed in the earlier cross-dataset 
framework.  Further, we present a new functional that captures the cross-partition 
motivation.  From the new functional, we derive a stable-point equation underlying 
our algorithmic framework in conjunction with the corresponding IB equation. 

Our algorithm was tested empirically on synthetic data and on a real-world text-
based task that aimed to identify corresponding themes across distinct religions. We 
have cross-clustered five sets of keywords that were extracted from topical corpora 
of texts about Buddhism, Christianity, Hinduism, Islam and Judaism.  In distinction 
from standard clustering results, our algorithm reveals themes that are common to 
all religions, such as sacred writings, festivals, narratives and myths and theological 
principles, and avoids topical clusters that correspond to individual religions (for 
example, ‘Christmas’ and ‘Easter’ are clustered together with ‘Ramadan’ rather than 
with ‘Church’). 

Finally, we have paid specific attention to the framework of clustering with side 
information [4].  While this approach was presented for a somewhat different 
mindset, it might be used directly to address clustering across pre-partitioned data. 
We compare the technical details of the two approaches and demonstrate 
empirically that clustering with side information does not seem appropriate for the 
kind of cross-partition tasks that we explored. 

2 The Information Bott leneck Method 
Probabilistic (“soft”) data clustering outputs, for each element x of the set being 
clustered and each cluster c, an assignment probability p(c|x).  The IB method [6] 
interprets probabilistic clustering as lossy data compression.  The given data is 
represented by a random variable X ranging over the clustered elements.  X is 
compressed through another random variable C, ranging over the clusters.  Every 
element x is characterized by conditional probability distribution p(Y|x), where Y is 
a third random variable taking the members y of a given set of features as values. 

The IB method formalizes the clustering task as minimizing the IB functional: 

L(IB)  =  I(C; X) − β I(C; Y) . (1) 

As known from information theory (Ch. 13 of [9]), minimizing the mutual 
information I(C; X) optimizes distorted compression rate.  A complementary bias to 
maximize I(C; Y) is interpreted in [6] as articulating the level of relevance of Y to 
the obtained clustering, inferred from the level by which C can predict Y.  β is a free 
parameter counterbalancing the two biases.  It is shown in [6] that p(c|x) values that 
minimize L(IB) satisfy the following equation: 
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where DKL stands for the Kullback-Leibler (KL) divergence, or relative entropy, 
between two distributions and z(β,x) is a normalization function over C.  Eq. (2) 
implies that, optimally, x is assigned to c in proportion to their KL distance in a 
feature   distribution  space,   where   the  distribution   p(Y|c)   takes   the  role  of  a 



 

 

Start at time t = 0 and iterate the following update-steps, till convergence:  

   IB1:  initialize pt(c|x) randomly or arbitrarily  (t = 0) 
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1
1)( cYpxYpD

t
tKLecp −−

−
β   (t > 0) 

   IB2: pt(c) =    ∑x t xpxcp )()|(  

   IB3: pt(y|c) =   ∑
x

t
t

xpxypxcp
cp

)()|()|(
)(

1  

Figure 1: The Information Bottleneck iterative algorithm (with fixed β and |C|). 

representative, or centroid, of c.  The feature variable Y is hence utilized as the 
(exclusive) means to guide clustering, beyond the random nature of compression. 

Figure 1 presents the IB iterative algorithm for a fixed value of β.  The IB1 update 
step follows Eq. (2).  The other two steps, which are derived from the IB functional 
as well, estimate the p(c) and p(y|c) values required for the next iteration.  The 
algorithm converges to a local minimum of the IB functional.  The IB setting, 
particularly the derivation of steps IB1 and IB3 of the algorithm, assumes that Y and 
C are independent given X, that is: I(C; Y|X) = ∑x p(x) I(C|x; Y|x) = 0. 

The balancing parameter β affects the number of distinct clusters being formed in a 
manner that resembles (inverse) temperature in physical systems.  The higher β is 
(i.e., the stronger the bias to construct C that predicts Y well), more distinct clusters 
are required for encoding the data.  For each |C| = 2, 3, …, there is a minimal β 
value, enabling the formation of |C| distinct clusters.  Setting β to be smaller than 
this critical value corresponding to the current |C| would result in two or more 
clusters that are identical to one another.  Based on this, the iterative algorithm is 
applied repeatedly within a gradual cooling-like (deterministic annealing) scheme: 
starting with random initialization of the p0(c|x)'s, generate two clusters with the 
critical β value, found empirically, for |C| = 2.  Then, use a perturbation on the 
obtained two-cluster configuration to initialize the p0(c|x)'s for a larger set of 
clusters and execute additional runs of the algorithm to identify the critical β value 
for the larger |C|.  And so on: each output configuration is used as a basis for a more 
granular one.  The final outcome is a “soft hierarchy” of probabilistic clusters. 

3 Cross-part i t ion Clustering 
Cross-partition (CP) clustering introduces a factor – a pre-given partition of the 
clustered data – additional to what considered in a standard clustering setting.  For 
representing this factor we introduce the pre-partitioning variable W, ranging over 
all parts w of the pre-given partition.  Every data element x is associated with W 
through a given probability distribution p(W|x).  Our goal is to cluster the data, so 
that the clusters C would not be correlated with W.  We notice that Y, which is 
intended to direct the formation of clusters, might be a-priori correlated with W, so 
the formed clusters might end up being correlated with W as well.  Our method aims 
at eliminating this aspect of Y. 

3 . 1 Infor mat i on De foc us i ng  

As noted, some of the information conveyed by Y characterizes structures correlated 
with W, while the other part of the information characterizes the target cross-W 



 

structures.  We are interested in detecting the latter while filtering out the former.  
However, there is no direct a-priori separation between the two parts of the Y-
mediated information.  Our strategy in tackling this difficulty is: we follow in 
general Y's directions, as the IB method does, while avoiding Y's impact whenever it 
entails undesired inter-dependencies of C and W. 

Our strategy implies conflicting biases with regard to the mutual information I(C,Y): 
it should be maximized in order to form meaningful clusters, but be minimized as 
well in the specific context where Y entails C–W dependencies.  Accordingly, we 
propose a computational procedure directed by two distinct cost-terms in tandem.  
The first one is the IB functional (Eq. 1), introducing the bias to maximize I(C,Y).  
With this bias alone, Y might dictate (or “explain”, in retrospect) substantial C–W 
dependencies, implying a low I(C;W|Y) value.1  Hence, the guideline of preventing Y 
from accounting for C–W dependencies is realized through an opposing bias of 
maximizing I(C;W|Y) = ∑y p(y) I(C|y; W|y).  The second cost term – the Information 
Defocusing (ID) functional – consequently counterbalances minimization of I(C,Y) 
against the new bias: 

L(ID)  =  I(C; Y) − η I(C;W|Y) , (3) 

where η is a free parameter articulating the tradeoff between the biases.  The ID 
functional captures our goal of reducing the impact of Y selectively: “defocusing” a 
specific aspect of the information Y conveys: the information correlated with W. 

In a like manner to the stable-point equation of the IB functional (Eq. 2), we derive 
the following stable-point equation for the ID functional:  
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where z(η,y) is a normalization function over C.  The derivation relies on an 
additional assumption, I(C;W) = 0, imposing the intended independence between C 
and W (the detailed derivation will be described elsewhere). 

The intuitive interpretation of Eq. (4) is as follows: a feature y is to be associated 
with a cluster c in proportion to a weighted, though flattened, geometric mean of the 
“W-projected centroids” p(y|c,w), priored by p(c).2  This scheme overweighs y's that 
contribute to c evenly across W.  Thus, clusters satisfying Eq. (4) are situated 
around centroids biased towards evenly contributing features.  The higher η is, 
heavier emphasis is put on suppressing disagreements between the w's.  For η → ∞ a 
plain weighted geometric-mean scheme is obtained.  The inclusion of a step derived 
from Eq. (4) in our algorithm (see below) facilitates convergence on a configuration 
with centroids dominated by features that are evenly distributed across W. 

3 . 2 The  Cr oss-par t i t i on  Cl uste r i ng Al gor ithm 

Our proposed cross partition (CP) clustering algorithm (Fig. 2) seeks a clustering 
configuration   that  optimizes   simultaneously   both   the  IB  and   ID  functionals, 

                                                        
1 Notice that “Z explaining well the dependencies between A and B” is equivalent with “A 
and B sharing little information in common given Z”, i.e. low I(A;B|Z).  Complete 
conditional independence is exemplified in the IB framework, assuming I(C;Y|X) = 0. 
2 Eq. (4) resembles our suggestion in [8] to compute a geometric average over the 
subsets; in the current paper this scheme is analytically derived from the ID functional. 



 

 

Start at time t = 0 and iterate the following update-steps, till convergence: 

   CP1: Initialize pt(c|x) randomly or arbitrarily  (t = 0) 
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Figure 2: The cross-partition clustering iterative algorithm (with fixed β, η, and |C|). 

thus obtaining clusters that cut across the pre-given partition W.  To this end, the 
algorithm interleaves an iterative computation of the stable-point equations, and the 
additional estimated parameters, for both functionals.  Steps CP1, CP2 and CP6 
correspond to the computations related to the IB functional, while steps CP3, CP4 
and CP5, which compute a separate set of parameters (denoted by an asterisk), 
correspond to the ID functional.  Figure 3 summarizes the roles of the two 
functionals in the dynamics of the CP algorithm.  The two components of the 
iterative cycle are tied together in steps CP3 and CP6, in which parameters from one 
set are used as input to compute a parameter of other set.  The derivation of step 
CP3 relies on an additional assumption, namely that C, Y and W are jointly 
independent given X.  This assumption, which extends to W the underlying 
assumption of the IB setting that C and Y are independent given X, still entails the 
IB stable point equation.  At convergence, the stable point equations for both the IB 
and ID functionals are satisfied, each by its own set of parameters (in steps CP1 and 
CP5). 

The deterministic annealing scheme, which gradually increases β over repeated runs 
(see Sec. 2), is applied for the CP algorithm as well with η held fixed.  For a given 
target number of clusters |C|, the algorithm empirically converges with a wide range 
of η values3. 

I(C;X) ↓     IB     β↑  I(C;Y)  ↓    ID    η↑  I(C; W|Y) 
       I(C; Y; W|X) = 0  ← assumptions →  I(C;W) = 0 

Figure 3: The interplay of the IB and the ID functionals in the CP algorithm. 

                                                        
3 High η values tend to dictate centroids with features that are unevenly distributed 
across W, resulting in shrinkage of some of the clusters.  Further analysis will be 
provided in future work. 



 

4 Experimenta l Resu lts 
Our synthetic setting consisted of 75 virtual elements, evenly pre-partitioned into 
three 25-element parts denoted X1, X2 and X3 (in our formalism, for each clustered 
element x, p(w|x) = 1 holds for either w = 1, 2, or 3).  On top of this pre-partition, 
we partitioned the data twice, getting two (exhaustive) clustering configurations: 
1. Target cross-W clustering: five clusters, each with representatives from all Xw's; 
2. Masking within-w clustering: six clusters, each consisting of roughly half the 

elements of either X1, X2 or X3 with no representatives from the other Xw's. 
Each cluster, of both configurations, was characterized by a designated subset of 
features.  Masking clusters were designed to be more salient than target clusters: 
they had more designated features (60 vs. 48 per cluster, i.e., 360 vs. 240 in total) 
and their elements shared higher feature-element (virtual) co-occurrence counts with 
those designated features (900 vs. 450 per element-feature pair).  Noise (random 
positive integer < 200) was added to all counts associating elements with their 
designated features (for both within-w and cross-W clusters), as well as to roughly 
quarter of the zero counts associating elements with the rest of the features. 

The plain IB method consistently produced configurations strongly correlated with 
the masking clustering, while the CP algorithm revealed the target configuration.  
We got (see Table 1A) almost perfect results in configurations of nearly equal-sized 
cross-W clusters, and somewhat less perfect reconstruction in configurations of 
diverging sizes (6, 9, 15, 21 and 24).  Performance level was measured relatively to 
optimal target-output cluster match by the proportion of elements correctly 
assigned, where assignment of an element x follows its highest p(c|x).  The results 
indicated were averaged over 200 runs.  They were obtained for the optimal η, 
which was found to be higher in the diverging-sizes task. 

In the text-based task, the clustered elements – keywords – were automatically 
extracted from five distinct corpora addressing five religions: introductory web 
pages, online magazines, encyclopedic entries etc., all downloaded from the 
Internet.  The clustered keyword set X was consequently pre-partitioned to disjoint 
subsets {Xw}w∈W, one for each religion4 (|Xw| ≈ 200 for each w).  We conducted 
experiments simultaneously involving religion pairs as well as all five religions.  
We took the features Y to be a set of words that commonly occur within all five 
corpora (|Y| ≈ 7000).  x–y co-occurrences were recorded within ±5-word sliding 
window truncated by sentence boundaries.  η was fixed to a value (1.0) enabling the 
formation of 20 clusters in all settings.  The obtained clusters revealed interesting 
cross religion themes (see Sec. 1).  For instance, the cluster (one of nine) capturing 
the theme of sacred festivals: the three highest p(c/x) members within each religion 
were  Full-moon,  Ceremony,  Celebration (Buddhism);  Easter,  Sunday, Christmas  

Table 1: Average correct assignment proportion scores for the synthetic task (A) and 
Jaccard-coefficient scores for the religion keyword classification task (B). 

A. Synthetic Data IB CP  B. Religion Data IB Coupled Clustering [7] CP 

  (cross-expert agreement on religion pairs .462±.232) 
equal-size clusters .305 .985  religion pairs .200±.100 .220±.138 .407±.144 
non-equal clusters .292 .827  all five  (one case) .104  ––––––– .167 

                                                        
4 A keyword x that appeared in the corpora of different religions was considered as a 
distinct element for each religion, so the Xw were kept disjointed. 
 



 

(Chrsitianity); Puja, Ceremony, Festival (Hinduism); Id-al-Fitr, Friday, Ramadan, 
(Islam); and Sukkoth, Shavuot, Rosh-Hodesh (Judaism).  The closest cluster 
produced by the plain IB method was poorer by far, including Islamic Ramadan, and 
Id and Jewish Passover, Rosh-Hashanah and Sabbath (which our method ranked 
high too), but no single related term from the other religions. 

Our external evaluation standards were cross-religion keyword classes constructed 
manually by experts of comparative religion studies.  One such expert classification 
involved all five religions, and eight classifications addressed religions in pairs.  
Each of the eight religion-pair classifications was contributed by two independent 
experts using the same keywords, so we could also assess the agreement between 
experts.  As an overlap measure we employed the Jaccard coefficient: the number of 
element pairs co-assigned together by both one of the evaluated clusters and one of 
the expert classes, divided by the number of pairs co-assigned by either our clusters 
or the expert (or both).  We did not assume the number of expert classes is known in 
advance (as done in the synthetic experiments), so the results were averaged over all 
configurations of 2–16 cluster hierarchy, for each experiment.  The results shown in 
Table 1B – clear improvement relatively to plain IB and the distance-based coupled 
clustering [7] – are, however, persistent when the number of clusters is taken to be 
equal to the number of classes, or if only the best score in hierarchy is considered. 
The level of cross-expert agreement indicates that our results are reasonably close to 
the scores expected in such subjective task. 

5 Comparison to Related Work 
The information bottleneck framework served as the basis for several approaches 
that represent additional information in their clustering setting. The multivariate 
information bottleneck (MIB) adapts the IB framework for networks of multiple 
variables [3].  However, all variables in such networks are either compressed (like 
X), or predicted  (like Y).  The incorporation of an empirical variable to be masked 
or defocused in the sense of our W is not possible.  Including such variables in the 
MIB framework might be explored in future work. 

Particularly relevant to our work is the IB-based method for extracting relevant 
constructs with side information [4].  This approach addresses settings in which two 
different types of features are distinguished explicitly: relevant versus irrelevant 
ones, denoted by Y+ and Y−.  Both types of features are incorporated within a single 
functional to be minimized: L(IB-side-info)  =  I(C; X) − β ( I(C; Y+) − γ I(C; Y−) ), which 
directly drives clustering to de-correlate C and Y−. 

Formally, our setting can be mapped to the side information setting by regarding the 
pre-partition W simply as the additional set of irrelevant features, giving symmetric 
(and opposite) roles to W and Y.  However, it seems that this view does not address 
properly the desired cross-partition setting.  In our setting, it is assumed that 
clustering should be guided in general by Y, while W should only neutralize 
particular information within Y that would otherwise yield the undesired correlation 
between C and W (as described in Section 3.1).  For that reason, the defocusing 
functional tie the three variables together by conditioning the de-correlation of C 
and W on Y, while its underlying assumption ensures the global de-correlation.   
Indeed, our method was found empirically superior on the cross-dataset task.  The 
side-information IB method (the iterative algorithm with best scoring γ) achieves 
correct assignment proportion of 0.52 in both synthetic tasks, where our method 
scored 0.99 and 0.83 (see Table 1A) and, in the religion-pair keyword classification 
task, Jaccard coefficient improved by 20% relatively to plain IB (compared to our 
100% improvement, see Table 1B). 



 

6 Conclusions 
This paper addressed the problem of clustering a pre-partitioned dataset, aiming to 
detect new internal structures that are not correlated with the pre-given partition but 
rather cut across its components.  The proposed framework extends the cross-dataset 
clustering algorithm [8], providing better formal grounding and representing any 
pre-given (soft) partition of the dataset. Supported by empirical evidence, we 
suggest that our framework is better suited for the cross-partition task than applying 
the side-information framework [4], which was originally developed to address a 
somewhat different setting. We also demonstrate substantial empirical advantage 
over the distance-based coupled-clustering algorithm [7]. 

As an applied real-world goal, the algorithm successfully detects cross-religion 
commonalities.  This goal exemplifies the more general notion of detecting 
analogies across different systems, which is a somewhat vague and non-consensual 
task and therefore especially challenging for a computational framework. Our 
approach can be viewed as an initial step towards principled identification of 
“hidden” commonalities between substantially different real world systems, while 
suppressing the vast majority of attributes that are irrelevant for the analogy. 

Further research may study the role of defocusing in supervised learning, where 
some pre-given partitions might mask the role of underlying discriminative features. 
Additionally, it would be interesting to explore relationships to other disciplines, 
e.g., network information theory ([9], Ch. 14) which provided motivation for the 
side-information approach.  Finally, both frameworks (ours and side-information) 
suggest the importance of dealing wisely with information that should not dictate 
the clustering output directly.  
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