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Abstract 

We propose an unsupervised methodology using independent 
component analysis (ICA) to cluster genes from DNA microarray 
data. Based on an ICA mixture model of genomic expression 
patterns, linear and nonlinear ICA finds components that are specific 
to certain biological processes. Genes that exhibit significant 
up-regulation or down-regulation within each component are 
grouped into clusters. We test the statistical significance of 
enrichment of gene annotations within each cluster. ICA-based 
clustering outperformed other leading methods in constructing 
functionally coherent clusters on various datasets. This result 
supports our model of genomic expression data as composite effect 
of independent biological processes. Comparison of clustering 
performance among various ICA algorithms including a 
kernel-based nonlinear ICA algorithm shows that nonlinear ICA 
performed the best for small datasets and natural-gradient 
maximization-likelihood worked well for all the datasets.  

1 Introduction 

Microarray technology has enabled genome-wide expression profiling, promising to 
provide insight into underlying biological mechanism involved in gene regulation. To 
aid such discoveries, mathematical tools that are versatile enough to capture the 
underlying biology and simple enough to be applied efficiently on large datasets are 
needed. Analysis tools based on novel data mining techniques have been proposed 
[1]-[6]. When applying mathematical models and tools to microarray analysis, 
clustering genes that have the similar biological properties is an important step for 
three reasons: reduction of data complexity, prediction of gene function, and 
evaluation of the analysis approach by measuring the statistical significance of 
biological coherence of gene clusters.  

Independent component analysis (ICA) linearly decomposes each of N vectors into M 
common component vectors (N≥M) so that each component is statistically as 
independent from the others as possible. One of the main applications of ICA is blind 



 

source separation (BSS) that aims to separate source signals from their mixtures. 
There have been a few attempts to apply ICA to the microarray expression data to 
extract meaningful signals each corresponding to independent biological process 
[5]-[6]. In this paper, we provide the first evidence that ICA is a superior 
mathematical model and clustering tool for microarray analysis, compared to the most 
widely used methods namely PCA and k-means clustering. We also introduce the 
application of nonlinear ICA to microarray analysis, and show that it outperforms 
linear ICA on some datasets. 

We apply ICA to microarray data to decompose the input data into statistically 
independent components. Then, genes are clustered in an unsupervised fashion into 
non-mutually exclusive clusters. Each independent component is assigned a putative 
biological meaning based on functional annotations of genes that are predominant 
within the component. We systematically evaluate the clustering performance of 
several ICA algorithms on four expression datasets and show that ICA-based 
clustering is superior to other leading methods that have been applied to analyze the 
same datasets. We also proposed a kernel based nonlinear ICA algorithm for dealing 
with more realistic mixture model. Among the different linear ICA algorithms 
including six linear and one nonlinear ICA algorithm, the natural-gradient 
maximum-likelihood estimation method (NMLE) [7]-[8] performs well in all the 
datasets. Kernel-based nonlinear ICA method worked better for three small datasets. 

2 Mathematical  model  of  genome-wide expression 

Several distinct biological processes take place simultaneously inside a cell; each 
biological process has its own expression program to up-regulate or down-regulate the 
level of expression of specific sets of genes. We model a genome-wide expression 
pattern in a given condition (measured by a microarray assay) as a mixture of signals 
generated by statistically independent biological processes with different activation 
levels. We design two kinds of models for genomic expression pattern: a linear and 
nonlinear mixture model.  

Suppose that a cell is governed by M independent biological processes S = (s1, …, 
sM)T, each of which is a vector of K gene expression levels, and that we measure the 
levels of expression of all genes in N conditions, resulting in a microarray expression 
matrix X = (x1,…,xN)T. The expression level at each different condition j can be 
expressed as linear combinations of the M biological processes: xj=aj1s1+…+ajMsM. 
We can express this idea concisely in matrix notation as follows. 
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More generally, we can express X = (x1,…,xN)T as a post-nonlinear mixture of the 
underlying independent processes as follows, where f(.) is a nonlinear mapping from 
N to N dimensional space. 

                             (2) 
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3 Independent component analysis  

In the models described above, since we assume that the underlying biological 
processes are independent, we suggest that vectors S=(s1,…,sM) are statistically 
independent and so ICA can recover S from the observed microarray data X. For linear 
ICA, we apply natural-gradient maximum estimation (NMLE) method which was 
proposed in [7] and was made more efficient by using natural gradient method in [8]. 
We also apply nonlinear ICA using reproducible kernel Hilbert spaces (RKHS) based 
on [9], as follows: 

1. We map the N dimensional input data xi to Ф(xi) in the feature space by using the 
kernel trick. The feature space is defined by the relationship Ф(xi)TФ(xj)=k(xi,, xj). 
That is, inner product of mapped data is determined to by a kernel function k(.,.) in 
the input space; we used a Gaussian radial basis function (RBF) kernel 
(k(x,y)=exp(-|x-y|2)) and a polynomial kernel of degree 2 (k(x,y)=(xTy+1)2). To 
perform mapping, we found orthonormal bases of the feature space by randomly 
sampling L input data v={v1,…,vL} 1000 times and choosing one set minimizing the 
condition number of Φv=(Φ(v1),…,Φ(vL)). Then, a set of orthonormal bases of the 
feature space is determined by the selected L images of input data in v as Ξ = 
Φv(Φv

TΦv)-1/2. We map all input data x1,…,xK, each corresponding to a gene, to 
Ψ(x1),…,Ψ(xK)  in the feature space with basis Ξ, as follows:       

Ψ(xi)=(Φv
TΦv)-1/2Φv

TΦv(xi) (1≤ i≤K)   (3) L

iL

i

LLL

L

xvk

xvk

vvkvvk

vvkvvk
ℜ∈
































=

−

),(

),(

),(),(

),(),( 1
2/1

1

111

M

L

MM

K

2. We linearly decompose the mapped data Ψ=[Ψ(x1),.,Ψ(xK)]∈RL×K into statistically 
independent components using NMLE. 

4 Proposed approach 

The microarray dataset we are given is in matrix form where each element xij 
corresponds to the level of expression of the jth gene in the ith experimental condition. 
Missing values are imputed by KNNImpute [10], an algorithm based on k nearest 
neighbors that is widely used in microarray analysis. Given the expression matrix X of 
N experiment by K genes, we perform the following steps. 

1. Apply ICA to decompose X into independent components y1, …,yM as in Equations 
(1) and (2). Prior to applying ICA, remove any rows that make the expression 
matrix X singular. After ICA, each component denoted by  yi  is a vector 
comprising K loads gene expression levels, i.e.,  yi = (yi1, ...,yiK). We chose to let 
the number of components M to be maximized, which is equal the number of 
microarray experiments N because the maximum for N in our datasets was 250, 
which is smaller than the number of biological processes we hypothesize to act 
within a cell.  

2. For each component, cluster genes according to their relative loads yij/mean(yi). 
Based on our ICA model, each component is a putative genomic expression 
program of an independent biological process. Thus, our hypothesis is that genes 
showing relatively high or low expression level within the component are the most 
important for the process. We create two clusters for each component: one cluster 
containing genes with expression level higher than a threshold, and one cluster 
containing genes with expression level lower than a threshold.  



 

Cluster i,1 = {gene j | > mean( ) + cijy iy × std( )}  

  Cluster i,2 = {gene j | < mean( ) – c
iy

ijy iy × std( )}                 (4) iy

Here, mean(yi) is the average, std(yi) is the standard deviation of yi; and c is an 
adjustable coefficient. The value of the coefficient c was varied from 1.0 to 2.0 and 
the result for c=1.25 was presented in this paper. The results for other values of c 
are similar, and are presented on the website www.stanford.edu/~silee/ICA/. 

3. For each cluster, measure the enrichment of each cluster with genes of known 
functional annotations. Using the Gene Ontology (GO) [11] and KEGG [12] gene 
annotation databases, we calculate the p-value for each cluster with every gene 
annotation, which is the probability that the cluster contains the observed number 
of genes with the annotation by chance assuming the hypergeometric distribution 
(details in [4]). For each gene annotation, the minimum p-value that is smaller than 
10-7 obtained from any cluster was collected. If no p-value smaller than 10-7 is 
found, we consider the gene annotation not to be detected by the approach. As a 
result, we can assign biological meaning to each cluster and the corresponding 
independent component and we can evaluate the clustering performance by 
comparing the collected minimum p-value for each gene annotation with that from 
other clustering approach. 

5 Performance evaluation 

We tested the ICA-based clustering to four expression datasets (D1—D4) described in 
Table 1. 

Table 1: The four datasets used in our analysis 

 ARRAY 
TYPE 

DESCRIPTION     # OF  
GENES (K) 

   # OF 
EXPS (N) 

D1 Spotted Budding yeast during cell cycle and 
CLB2/CLN3 overactive strain [13] 

4579 22 

D2 Oligonucl
eotide 

Budding yeast during cell cycle [14] 6616 17 

D3 Spotted C. elegans in various conditions [3] 17817 553 
D4 Oligonucl

eotide 
Normal human tissue including 19 

kinds of tissues [15] 
7070 59 

For D1 and D4, we compared the biological coherence of ICA components with that 
of PCA applied in the same datasets in [1] and [2], respectively. For D2 and D3, we 
compared with k-means clustering and the topomap method, applied in the same 
datasets in [4] and [3], respectively. We applied nonlinear ICA to D1, D2 and D4. 
Dataset D3 is very large and makes the nonlinear algorithm unstable. 

D1 was preprocessed to contain log-ratios xij=log2(Rij/Gij) between red and green 
intensities. In [1], principal components, referred to as eigenarrays, were 
hypothesized to be genomic expression programs of distinct biological processes. We 
compared the biological coherence of independent components with that of principal 
components found by [1]. Comparison was done in two ways: (1) For each 
component, we grouped genes within top x% of significant up-regulation and 
down-regulation (as measured by the load of the gene in the component) into two 
clusters with x adjusted from 5% to 45%. For each value of x, statistical significance 
was measured for clusters from independent components and compared with that from 



 

principal components based on the minimum p-value for each gene annotation, as 
described in Section 4. We made a scatter plot to compare the negative log of the 
collected best p-values for each gene annotation when x is fixed to be 15%, shown in 
Figure 1 (a) (2) Same as before, except we did not fix the value of x; instead, we 
collected the minimum p-value from each method for each GO and KEGG gene 
annotation category and compared the collected p-values (Figure 1 (b)). For both 
cases, in the majority of the gene annotation categories ICA produced significantly 
lower p-values than PCA did, especially for gene annotation for which both ICA and 
PCA showed high significance. 

 

 
Figure 1. Comparison of linear ICA (NMLE) to PCA on dataset D1 (a) when x is fixed 
to be 15%; (b) when x is not fixed. (c) Three independent components of dataset D4. 

Each gene is mapped to a point based on the value assigned to the gene in three 
independent components, which are enriched with liver- (red), Muscle- (orange) and 

vulva-specific (green) genes, respectively. 

 

The expression levels of genes in D4 were normalized across the 59 experiments, and 
the logarithms of the resulting values were taken. Experiments 57, 58, and 59 were 
removed because they made the expression matrix nearly singular. In [2], a clustering 
approach based on PCA and subsequent visual inspection was applied to an earlier 
version of this dataset, containing 50 of the 59 samples. After we performed ICA, the 
most significant independent components were enriched for liver-specific, 
muscle-specific and vulva-specific genes with p-value of 10-133, 10-124 and 100-117, 
respectively. In the ICA liver cluster, 198 genes were liver specific (out of a total of 
244), as compared with the 23 liver-specific genes identified in [2] using PCA. The 
ICA muscle cluster of 235 genes contains 199 muscle specific genes compared to 19 
muscle-specific genes identified in [2].  We generated a 3-dimensional scatter plot of 
the load expression levels of all genes annotated in [15] on these significant ICA 
components in Figure 1 (c). We can see that the liver-specific, muscle-specific and 
vulva-specific genes are strongly biased to lie on the x-, y-, and z- axis, respectively. 
We applied nonlinear ICA on this dataset and the first four most significant clusters 
from nonlinear ICA with Gaussian RBF kernel were muscle-specific, liver-specific, 
vulva-specific and brain-specific with p-value of 10-158, 10-127, 10-112 and 10-70, 
respectively, showing considerable improvement over the linear ICA clusters.  

For D2, variance-normalization was applied to the 3000 most variant genes as in [4]. 
The 17th experiment, which made the expression matrix close to singular, was 
removed. We measured the statistical significance of clusters as described in Section 
4 and compared the smallest p-value of each gene annotation from our approach to 
that from k-means clustering applied to the same dataset [4]. We made a scatter plot 



 

for comparing the negative log of the smallest p-value (y-axis) from ICA clusters with 
that from k-means clustering (x-axis). The coefficient c is varied from 1.0 to 2.0 and 
the superiority of ICA-based clustering to k-means clustering does not change. In 
many practical settings, estimation of the best c is not needed; we can adjust c to get a 
desired size of the cluster unless our focus is to blindly find the size of clusters. Figure 
2 (a) (b) (c) shows for c=1.25 a comparison of the performance of linear ICA 
(NMLE), nonlinear ICA with Gaussian RBF kernel (NICA gauss), and k-means 
clustering (k-means).  

For D3, first we removed experiments that contained more than 7000 missing values, 
because ICA does not perform properly when the dataset contains many missing 
values. The 250 remaining experiments were used, containing expression levels for 
17817 genes preprocessed to be log-ratios xij=log2(Rij/Gij) between red and green 
intensities. We compared the biological coherence of clusters by our approach with 
that of topomap-based approach applied to the same dataset in [3]. The result when 
c=1.25 is plotted in the Figure 2 (d). We observe that the two methods perform very 
similarly, with most categories having roughly the same p-value in ICA and in the 
topomap clusters. The topomap clustering approach performs slightly better in a 
larger fraction of the categories. Still, we consider this performance a confirmation 
that ICA is a widely applicable method that requires minimal training: in this case the 
missing values and high diversity of the data make clustering especially challenging, 
while the topomap approach was specifically designed and manually trained for this 
dataset as described in [3]. 

Finally, we compared different ICA algorithms in terms of clustering performance. 
We tested six linear ICA methods: Natural Gradient Maximum Likelihood Estimation 
(NMLE) [7][8], Joint Approximate Diagonalization of Eigenmatrices [16], Fast Fixed 
Point ICA with three different measures of non-Gaussianity [17], and Extended 
Information Maximization (Infomax) [18]. We also tested two kernels for nonlinear 
ICA: Gaussian RBF kernel, and polynomial kernel (NICA ploy). For each dataset, we 
compared the biological coherence of clusters generated by each method. Among the 
six linear ICA algorithms, NMLE was the best in all datasets. Among both linear and 
nonlinear methods, the Gaussian kernel nonlinear ICA method was the best in 
Datasets D1, D2 and D4, the polynomial kernel nonlinear ICA method was best in 
Dataset D4, and NMLE was best in the large datasets (D3 and D4). In Figure 3, we 
compare the NMLE method with three other ICA methods for the dataset D2. Overall, 
the NMLE algorithm consistently performed well in all datasets. The nonlinear ICA 
algorithms performed best in the small datasets, but were unstable in the two largest 
datasets. More comparison results are demonstrated in the website 
www.stanford.edu/~silee/ICA/. 

  



 

 
Figure 2: Comparison of (a) linear ICA (NMLE) with k-means clustering, (b) 

nonlinear ICA with Gaussian RBF kernel to linear ICA (NMLE), and (c) nonlinear 
ICA with Gaussian RBF kernel to k-means clustering on the dataset D2. (d) 

Comparison of linear ICA (NMLE) to topomap-based approach on the dataset D3. 

 

 
Figure 3: Comparison of linear ICA (NMLE) to (a) Extended Infomax ICA algorithm, 

(b) Fast ICA with symmetric orthogonalization and tanh nonlinearity and (c) 
Nonlinear ICA with polynomial kernel of degree 2 on the Dataset (B). 

6 Discussion 

ICA is a powerful statistical method for separating mixed independent signals. We 
proposed applying ICA to decompose microarray data into independent gene 
expression patterns of underlying biological processes, and to group genes into 
clusters that are mutually non-exclusive with statistically significant functional 
coherence. Our clustering method outperformed several leading methods on a variety 
of datasets, with the added advantage that it requires setting only one parameter, 
namely the fraction c of standard deviations beyond which a gene is considered to be 
associated with a component’s cluster. We observed that performance was not very 
sensitive to that parameter, suggesting that ICA is robust enough to be used for 
clustering with little human intervention.  

The empirical performance of ICA in our tests supports the hypothesis that statistical 
independence is a good criterion for separating mixed biological signals in microarray 
data. The Extended Infomax ICA algorithm proposed in [18] can automatically 
determine whether the distribution of each source signal is super-Gaussian or 
sub-Gaussian. Interestingly, the application of Extended Infomax ICA to all the 



 

expression datasets uncovered no source signal with sub-Gaussian distribution. A 
likely explanation is that global gene expression profiles are mixtures of 
super-Gaussian sources rather than of sub-Gaussian sources. This finding is consistent 
with the following intuition: underlying biological processes are super-Gaussian, 
because they affect sharply the relevant genes, typically a small fraction of all genes, 
and leave the majority of genes relatively unaffected. 
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