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Abstract

The connectivity of the nervous system of the nematodeCaenorhabdi-
tis eleganshas been described completely, but the analysis of the neu-
ronal basis of behavior in this system is just beginning. Here, we used
an optimization algorithm to search for patterns of connectivity suffi-
cient to compute the sensorimotor transformation underlyingC. elegans
chemotaxis, a simple form of spatial orientation behavior in which turn-
ing probability is modulated by the rate of change of chemical concen-
tration. Optimization produced differentiator networks with inhibitory
feedback among all neurons. Further analysis showed that feedback reg-
ulates the latency between sensory input and behavior. Common patterns
of connectivity between the model and biological networks suggest new
functions for previously identified connections in theC. elegansnervous
system.

1 Introduction

The complete description of the morphology and synaptic connectivity of all 302 neurons
in the nematodeCaenorhabditis elegans[15] raised the prospect of the first comprehensive
understanding of the neuronal basis of an animal’s entire behavioral repertoire. The advent
of new electrophysiological and functional imaging techniques forC. elegansneurons [7, 8]
has made this project more realistic than before. Further progress would be accelerated,
however, by prior knowledge of the sensorimotor transformations underlying the behaviors
of C. elegans, together with knowledge of how these transformations could be implemented
with C. elegans-like neuronal elements.

In previous work, we and others have identified the main features of the sensorimotor trans-
formation underlyingC. eleganschemotaxis [5, 11], one of two forms of spatial orientation
identified in this species. Locomotion consists of periods of sinusoidal forward movement,
called “runs,” which are punctuated by bouts of turning [12] that have been termed “pirou-
ettes” [11]. Pirouette probability is modulated by the rate of change of chemical concen-
tration (dC(t)/dt). WhendC(t)/dt < 0, pirouette probability is increased whereas when
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dC(t)/dt > 0, pirouette probability is decreased. Thus, runs down the gradient are trun-
cated and runs up the gradient are extended, resulting in net movement toward the gradient
peak.

The process of identifying the neurons that compute this sensorimotor transformation is
just beginning. The chemosensory neurons responsible for the input representation are
known[1], as are the premotor interneurons for turning behavior[2]. Much less is known
about the interneurons that link inputs to outputs. To gain insight into how this transfor-
mation might be computed at the interneuronal level, we used an unbiased parameter opti-
mization algorithm to construct model neural networks capable of computing the transfor-
mation usingC. elegans-like neurons. We found that networks with one or two interneurons
were sufficient. A common but unexpected feature of all networks was inhibitory feedback
among all neurons. We propose that the main function of this feedback is to regulate the
latency between sensory input and behavior.

2 Assumptions

We used simulated annealing to search for patterns of connectivity sufficient for computing
the chemotaxis sensorimotor transformation. The algorithm was constrained by three main
assumptions:

1. Primary chemosensory neurons inC. elegansreport attractant concentration at a
single point in space.

2. Chemosensory interneurons converge on a network of locomotory command neu-
rons to regulate turning probability.

3. The sensorimotor transformation inC. elegansis computed mainly at the network
level, not at the cellular level.

Assumption (1) follows from the anatomy and distribution of chemosensory organs inC.
elegans[1, 13, 14]. Assumption (2) follows from anatomical reconstructions of theC. ele-
gansnervous system [15], together with the fact that laser ablation studies have identified
four pairs of pre-motor interneurons that are necessary for turning inC. elegans[2]. As-
sumption (3) is heuristic.

3 Network

Neurons were modeled by the equation:

τi
dAi(t)

dt
= −Ai(t) + σ(Ii), with Ii =

∑
j

(wjiAj(t)) + bi (1)

whereAi is activation level of neuroni in the network,σ(Ii) is the logistic function
1/(1 + e−Ii), wji is the synaptic strength from neuronj to neuroni, and bi is static
bias. The time constantτi determines how rapidly the activation approaches its steady-
state value for constantIi. Equation 1 embodies the additional assumption that, on the
time scale of chemotaxis behavior,C. elegansneurons are effectively passive, isopoten-
tial nodes that release neurotransmitter in graded fashion. This assumption follows from
preliminary electrophysiological recordings from neurons and muscles inC. elegansand
Ascaris, another species of nematode[3, 4, 6].

The model of the chemosensory network had one input neuron, eight interneurons, and one
output neuron (Figure 1). The input neuron (i= 0) was a lumped representation of all
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Figure 1: Model chemosensory net-
work. Model neurons were passive,
isopoential nodes. The network con-
tained one sensory neuron, one out-
put neuron, and eight interneurons.
Input to the sensory neuron was the
time course of chemoattractant con-
centrationC(t). The activation of
the output neuron was mapped to
turning probability by the function
F (t) given in Equation 2. The net-
work was fully connected with self-
connections (not shown).

the chemosensory neurons in the real animal. Sensory input to the network wasC(t), the
time course of attractant concentration experienced by a real worm in an actual chemotaxis
assay[11].C(t) was added to the net input of the sensory neuron (i = 0). The interneurons
in the model (1≤ i ≤ 8) represented all the chemosensory interneurons in the real animal.
The activity level of the output neuron (i= 9) determined the behavioral state of the model,
i.e. turning probability[11], according to the piecewise function:

F (t) =

{
Phigh A9(t) ≤ T1

Prest T1 < A9(t) < T2

Plow A9(t) ≥ T2

(2)

whereT1 andT2 are arbitrary thresholds and the threeP values represent the indicated
levels of turning probability.

4 Optimization

The chemosensory network model was optimized to compute an idealized version of the
true sensorimotor transformation linkingC(t) to turning probability[11]. To construct the
idealized transformation, we mapped the instantaneous derivative ofC(t) to desired turning
probabilityG(t) as follows:

G(t) =

{
Phigh dC(t)/dt ≤ −U
Prest −U < dC(t)/dt < +U
Plow dC(t)/dt ≥ +U

(3)

whereU is a threshold derived from previous behavioral observations (Figure 7 in [11]).
The goal of the optimization was to make the network’s turning probabilityF (t) equal to
the desired turning probabilityG(t) at all t. Optimization was carried out by annealing
three parameter types: weights, time constants, and biases. Optimized networks were fully
connected and self-connections were allowed.

The result of a typical optimization run is illustrated in Figure 2(a), which shows good
agreement between network and desired turning probabilities. Results similar to Figure
2(a) were found for 369 networks out of 401 runs (92%). We noted that in most networks,
many interneurons had a constant offset but showed little or no response to changes in
sensory input. We found that we could eliminate these interneurons by a pruning procedure
in which the tonic effect of the offset was absorbed into the bias term of postsynaptic
neurons. Pruning had little or no effect on network performance (Figure 2(b)), suggesting



that the eliminated neurons were nonfunctional. By this procedure, 67% of the networks
could be reduced to one interneuron and 27% could be reduced to two interneurons. A key
question is whether the network generalizes to aC(t) time course that it has not seen before.
Generalization was tested by challenging pruned networks with theC(t) time course from
a second real chemotaxis assay. There was good agreement between network and desired
turning probability, indicating an acceptable level of generalization (Figure 2(c)).
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Figure 2: Network performance after optimization. In each panel, the upper trace repre-
sentsG(t), the desired turning probability in response to a particularC(t) time course (not
shown), whereas the lower trace representsF (t), the resulting network turning probabil-
ity. Shading signifies turning probability (black =Phigh, grey =Prest, white =Plow). (a)
Performance of a typical network after optimization. (b) Performance of the same network
after pruning. (c) Performance of the pruned network when stimulated by a differentC(t)
time course. Network turning probability is delayed relative to desired turning probability
because of the time required for sensory input to affect behavioral state.

5 Results

Here we focus on the largest class of networks, those with a single interneuron (Figure
3(a)). All single-interneuron networks had three common features (Figure 3(b)). First,
the direct pathway from sensory neuron to output neuron was excitatory, whereas the indi-
rect pathway via the interneuron was inhibitory. Such a circuit computes an approximate
derivative of its input by subtracting a delayed version of the input from its present value[9].
Second, all neurons had significant inhibitory self-connections. We noted that inhibitory
self-connections were strongest on the input and output neurons, the two neurons compris-
ing the direct pathway representing current sensory input. We hypothesized that the func-
tion of inhibitory self-connections was to decrease response latency in the direct pathway.
Such a decrease would be a means of compensating for the fact thatG(t) was an instanta-
neous function ofC(t), whereas the neuronal time constantτi tends to introduce a delay
betweenC(t) and the network’s output. Third, the net effect of all disynaptic recurrent con-
nections was also inhibitory. By analogy to inhibitory self-connections, we hypothesized
that the function of the recurrent pathways was also to regulate response latency.

To test the hypothetical functions of the self-connections and recurrent connections, we in-
troduced an explicit time delay (∆t) betweendC(t)/dt and the desired turning probability
G(t) such that:

G′(t) = G(t−∆t) (4)

G′(t) was then substituted forG(t) during optimization. We then repeated the optimization
procedure with a range of∆t values and looked for systematic effects on connectivity.
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Figure 3: Connectivity and common features of single-interneuron networks. (a) Average
sign and strength of connections. Line thickness is proportional to connection strength. In
other single-interneuron networks, the sign of the connections to and from the interneuron
were reversed (not shown). (b) The three common features of single-interneuron networks.

Effects on self-connections. We found that the magnitude of self-connections on the
input and output neurons was inversely related to ∆ t (Figure 4(a)). This result suggests
that the function of these self-connections is to regulate response latency, as hypothesized.
We noted that the interneuron self-connection remains comparatively small regardless of
∆ t. This result is consistent with the function of the disynaptic pathway, which is to present
a delayed version of the input to the output neuron.
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Figure 4: The effect on connectivity of introducing time delays between input and output
during optimization. (a) The effect on self-connections. (b) The effect on recurrent connec-
tions. Recurrent connection strength was quantified by taking the product of the weights
along each of the three recurrent loops in Figure 3(a).

Effects on recurrent connections. We quantified the strength of the recurrent connec-
tions by taking the product of the two weights along each of the three recurrent loops in the
network. We found that the strengths of the two recurrent loops that included the interneu-
ron was inversely related to ∆ t (Figure 4(b)). This result suggests that the function of these
loops is to regulate response latency and supports the hypothetical function of the recur-



rent connections. Interestingly, however, the strength of the recurrent loop between input
and output neurons was not affected by changes in∆t. Comparing the overall patterns of
changes in weights produced by changes in∆t showed that the optimization algorithm uti-
lized self-connections to adjust delays along the direct pathway and recurrent connections
to adjust delays along the indirect pathway. The reason for this pattern is presently unclear.

6 Analysis

To provide a theoretical explanation for the effects of time delays on the magnitude of self-
connections, we analyzed the step response of Equation 1 for a reduced system containing
a single linear neuron with a self-connection:

τi
dAi(t)

dt
= wiiAi(t)−Ai(t) + h(t) (5)

whereh(t) represents a generic external input (sensory or synaptic). Solving Equation 5
for h(t) equal to a step of amplitudeM at t = 0 with A(0) = 0 gives:

Ai(t) =
(

M

1− wii

) [
1− exp

[
−

(
1− wii

τi
t

)]]
(6)

From Equation 6, whenwii = 0 (no self-connection) the neuron relaxes at the rate1/τi,
whereas whenwii < 0 (inhibitory self-connection) the neuron relaxes at the higher rate
of (1 + |wii|)/τi. Thus, response latency drops as the strength of the inhibitory self con-
nection increases and, conversely, response latency rises as connection strength decreases.
This result explains the effect on self-connection strength of introducing a delay between
betweendC(t)/dt and turning probability (Figure 4(a)).

We made a similar analysis of the effects of time delays on the recurrent connections. Here,
however, we studied a reduced system of two linear neurons with reciprocal synapses and
an external input to one of the neurons.

τi
dAi(t)

dt
= wjiAj(t)−Ai(t) + h(t) and τj

dAj(t)
dt

= wijAi(t)−Aj(t) (7)

We solved this system for the case where the external inputh(t) = M sin(Ωt). The solu-
tion has the form:

Ai(t) = Di sin(Ωt− φi) and Aj(t) = Dj sin(Ωt− φj) (8)

with φi = φj = arctan
[

2Ωτ

1− wijwji − Ω2τ2

]
(9)

Equation (9) gives the phase delay between the sinusoidal external input and the sinusoidal
response of the two neuron system. In Figure 5, the relationship between phase delay and
the strength of the recurrent connections is plotted with the connection strength on the
ordinate as in Figure 4(b). The graph shows an inverse relationship between connection
strength and phase delay that approximates the inverse relationship between connection
strength and time delay shown in Figure 4(b). The correspondence between the trends in
Figure 4(b) and 5 explain the effects on recurrent connection strength of introducing a delay
between betweendC(t)/dt and turning probability.
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Figure 5: The relationship between
phase delay and recurrent connection
strength. Equation 9 is plotted for
three different driving frequencies, (Hz
×10−3): Ω1 = 50, Ω2 = 18.75, and
Ω3 = 3.75. These frequencies span the
frequencies observed in a Fourier analy-
sis of theC(t) time course used during
optimization. There is an inverse rela-
tionship between connection strength and
phase delay. Axis have been reversed for
comparison with Figure 4(b).
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Figure 6: The network of chemosensory
interneurons in the real animal. Shown
are the interneurons interposed between
the chemosensory neuron ASE and the
two locomotory command neurons AVA
and AVB. The diagram is restricted to in-
terneuron pathways with less than three
synapses. Arrows are chemical synapses.
Dashed lines are gap junctions. Connec-
tivity is inferred from the anatomical re-
constructions of reference [15].

7 Discussion

We used simulated annealing to search for networks capable of computing an idealized
version of the chemotaxis sensorimotor transformation inC. elegans. We found that one
class of such networks is the three neuron differentiator with inhibitory feedback. The
appearance of differentiator networks was not surprising [9] because the networks were
optimized to report, in essence, the sign ofdC(t)/dt (Equation 3). The prevalence of in-
hibitory feedback, however, was unexpected. Inhibitory feedback was found at two levels:
self-connections and recurrent connections. Combining an empirical and theoretical ap-
proach, we have argued that inhibitory feedback at both levels functions to regulate the
response latency of the system’s output relative to its input. Such regulation could be func-
tionally significant in theC. elegansnervous system, where neurons may have an unusually
high input resistance due to their small size. High input resistance could lead to long re-
laxation times because the membrane time constant is proportional to input resistance. The
types of inhibitory feedback identified here could also be used to mitigate this effect.

There are intriguing parallels between our three-neuron network models and the biological
network. Figure 6 shows the network of interneurons interposed between the chemosensory
neuron class ASE, the main chemosensory neurons for salt chemotaxis, and the locomotory
command neurons classes AVB and AVA. The interneurons in Figure 6 are candidates for
computing the sensorimotor transformation for chemotaxisC. elegans. Three parallels are
prominent. First, there are two candidate differentiator circuits, as noted previously[16].
These circuits are formed by the neuronal triplets ASE-AIA-AIB and ASE-AWC-AIB.
Second, there are self-connections on three neuron classes in the circuit, including AWC,
one of the differentiator neurons. These self-connections represent anatomically identified
connections between left and right members of the respective classes. It remains to be
seen, however, whether these connections are inhibitory in the biological network. Self-
connections could also be implemented at the cellular level by voltage dependent currents.
A voltage-dependent potassium current, for example, can be functionally equivalent to an



inhibitory self-connection. Electrophysiological recordings from ASE and other neurons in
C. elegansconfirm the presence of such currents[6, 10]. Thus, it is conceivable that many
neurons in the biological network have the cellular equivalent of self-connections. Third,
there are reciprocal connections between ASE and three of its four postsynaptic targets.
These connections could provide recurrent inhibition if they have the appropriate signs.

Common patterns of connectivity between the model and biological networks suggest new
functionality for identified connections in theC. elegansnervous system. It should be
possible to test these functions through physiological recordings and neuronal ablations.
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