An MCMC-Based Method of Comparing
Connectionist Models in Cognitive Science

Woojae Kim, Daniel J. Navarro; Mark A. Pitt, In Jae Myung
Department of Psychology
Ohio State University
{kim.1124, navarro.20, pitt.2, myung.1}@osu.edu

Abstract

Despite the popularity of connectionist models in cognitive science,
their performance can often be difficult to evaluate. Inspired by the
geometric approach to statistical model selection, we introduce a
conceptually similar method to examine the global behavior of a
connectionist model, by counting the number and types of response
patterns it can simulate. The Markov Chain Monte Carlo-based
algorithm that we constructed finds these patterns efficiently. We
demonstrate the approach using two localist network models of
speech perception.

1 Introduction

Connectionist models are popular in some areas of cognitive science, especially
language processing. One reason for this is that they provide a means of expressing
the fundamental principles of a theory in a readily testable computational form.
For example, levels of mental representation can be mapped onto layers of nodes
in a connectionist network. Information flow between levels is then defined by the
types of connection (e.g., excitatory and inhibitory) between layers. The soundness
of the theoretical assumptions are then evaluated by studying the behavior of the
network in simulations and testing its predictions experimentally.

Although this sort of modeling has enriched our understanding of human cognition,
the consequences of the choices made in the design of a model can be difficult to
evaluate. While good simulation performance is assumed to support the model
and its underlying principles, a drawback of this testing methodology is that it can
obscure the role played by a model’s complexity and other reasons why a competing
model might simulate human data equally well.

These concerns are part and parcel of the well-known problem of model selection. A
great deal of progress has been made in solving it for statistical models (i.e., those
that can be described by a family of probability distributions [1, 2]). Connectionist

*Correspondence should be addressed to Daniel Navarro, Department of Psychology,
Ohio State University, 1827 Neil Avenue Mall, Columbus OH 43210, USA. Telephone:
(614) 292-1030, Facsimile: (614) 292-5601.

models, however, are a computationally different beast. The current paper intro-
duces a technique that can be used to assist in evaluating and choosing between
connectionist models of cognition.

2 A Complexity Measure for Connectionist Models

The ability of a connectionist model to simulate human performance well does not
provide conclusive evidence that the network architecture is a good approximation
to the human cognitive system that generated the data. For instance, it would be
unimpressive if it turned out that the model could also simulate many non-human-
like patterns. Accordingly, we need a “global” view of the model’s behavior to
discover all of the qualitatively different patterns it can simulate.

A model’s ability to reproduce diverse patterns of data is known as its complexity, an
intrinsic property of a model that arises from the interaction between its parameters
and functional form. For statistical models, it can be calculated by integrating the
determinant of the Fisher information matrix over the parameter space of the model,
and adding a term that is linear in the number of parameters. Although originally
derived by Rissanen [1] from an algorithmic coding perspective, this measure is
sometimes called the geometric complexity, because it is equal to the logarithm of
the ratio of two Riemannian volumes. Viewed from this geometric perspective, the
measure has an elegant interpretation as a count of the number of “distinguishable”
distributions that a model can generate [3, 4]. Unfortunately, geometric complexity
cannot be applied to connectionist models, because these models rarely possess a
likelihood function, much less a well-defined Fisher information matrix. Also, in
many cases a learning (i.e., model-fitting) algorithm for finding optimal parameter
values is not proposed along with the model, further complicating matters.

A conceptually simple solution to the problem, albeit a computationally demanding
one, is first to discretize the data space in some properly defined sense and then
to identify all of the data patterns a connectionist model can generate. This ap-
proach provides the desired global view of the model’s capabilities and its definition
resembles that of geometric complexity: the complexity of a connectionist model is
defined in terms of the number of discrete data patterns the model can produce. As
such, this reparametrization-invariant complexity measure can be used for virtually
all types of network models provided that the discretization of the data space is
both justifiable and meaningful.

A challenge in implementing this solution lies in the enormity of the data space,
which may contain a truly astronomical number of patterns. Only a small fraction of
these might correspond to a model’s predictions, so it is essential to use an efficient
search algorithm, one that will find most or all of these patterns in a reasonable
time. We describe an algorithm that uses Markov Chain Monte Carlo (MCMC)
to solve such problems. It is tailored to exploit the kinds of search spaces that we
suspect are typical of localist connectionist models, and we evaluate its performance
on two of them.

3 Localist Models of Phoneme Perception

A central issue in the field of human speech perception is how lexical knowledge
influences the perception of speech sounds. That is, how does knowing the word you
are hearing influence how you hear the smaller units that make up the word (i.e.,
its phonemes)? Two localist models have been proposed that represent opposing
theoretical positions. Both models were motivated by different theoretical prin-

CLexi cal Layer C Lexi cal Layer

Phonene Phonere
C Phonene Layer | nput —> Deci si on

Figure 1: Network architectures for TRACE (left) and MERGE (right). Arrows in-
dicate excitatory connections between layers; lines with dots indicate inhibitory
connections within layers.

ciples. Proponents of TRACE [5] argue for bi-directional communication between
layers whereas proponents of MERGE [6] argue against it. The models are shown
schematically in Figure 1. Each contains two main layers. Phonemes are repre-
sented in the first layer and words in the second. Activation flows from the first to
the second layer in both models. At the heart of the controversy is whether activa-
tion also flows in the reverse direction, directly affecting how the phonemic input is
processed. In TRACE it can. In MERGE it cannot. Instead, the processing performed
at the phoneme level in MERGE is split in two, with an input stage and a phoneme
decision stage. The second, lexical layer cannot directly affect phoneme activation.
Instead, the two sources of information (phonemic and lexical) are integrated only
at the phoneme decision stage.

Although the precise details of the models are unnecessary for the purposes of this
paper , it will be useful to sketch a few of their technical details. The parameters for
the models (denoted #), of which TRACE has 7 and MERGE has 11, correspond to the
strength of the excitatory and inhibitory connections between nodes, both within
and between layers. The networks receive a continuous input, and stabilize at a final
state after a certain number of cycles. In our formulation, a parameter set 6 was
considered valid only if the final state satisfied certain decision criteria (discussed
shortly). Detailed descriptions of the models, including typical parameter values,
are given by [5] and [6].

Despite the differences in motivation, TRACE and MERGE are comparable in their
ability to simulate key experimental findings [6], making it quite challenging if
not impossible to distinguish between then experimentally. Yet surely the models
are not identical? Is one more complex than the other? What are the functional
differences between the two?

In order to address these questions, we consider data from experiments by [6] which
are captured well by both models. In the experiments, monosyllabic words were
presented in which the last phoneme from one word was partially replaced by one
from another word (through digital editing) to create word blends that retained
residual information about the identity of the phoneme from both words. The six
types of blends are listed on the left of Table 1. Listeners had to categorize the last
phoneme in one task (phoneme decision) and categorize the entire utterance as a
word or a nonsense word in the other task (lexical decision). The response choices
in each task are listed in the table. Three responses choices were used in lexical
decision to test the models’ ability to distinguish between words, not just words
and nonwords. The asterisks in each cell indicate the responses that listeners chose
most often. Both TRACE and MERGE can simulate this pattern of responses.

Table 1: The experimental design. Asterisks denote human responses.

Condition Name Example Phonemic Decision Lexical Decision
/v/ /g/ /z/ /v/ | job jog nonword
bB JOb + joB * *
gB JOg + joB * *
vB JOv + joB * *
zZ JOz + joZ * *
gZ JOg + joZ * *
vZ JOv + joZ * *

Table 2: Two sets of decision rules for TRACE and MERGE. The values shown
correspond to activation levels of the appropriate decision node.

Phoneme Decision Lexical Decision
Constraint Choose /b/ if. .. Choose "job" if... Choose “nonword” if...
Weak /b/> 0.4 & others < 0.4 job > 0.4 & jog < 0.4 both < 0.4
Strong /b/> 0.45 & others < 0.25 | job > 0.45 & jog < 0.25 both < 0.25
(/b/ — max(others)) > 0.3 (job — jog) > 0.3 abs(difference) < 0.15

The profile of responses decisions (phoneme and lexical) over the six experimental
conditions provides a natural definition of a data pattern that the model could
produce, and the decision rules establish a natural (surjective) mapping from the
continuous space of network states (of which each model can produce some subset)
to the discrete space of data patterns. We applied two different sets of decision rules,
listed in Table 2, and were interested in determining how many patterns (besides
the human-like pattern) each model can generate. As previously discussed, these
counts will serve as a measure of model complexity.

4 The Search Algorithm

The search problem that we need to solve differs from the standard Monte Carlo
counting problem. Ordinarily, Monte Carlo methods are used to discover how much
of the search space is covered by some region by counting how often co-ordinates are
sampled from that region. In our problem, a high-dimensional parameter space has
been partitioned into an unknown number of regions, with each region corresponding
to a single data pattern. The task is to find all such regions irrespective of their size.
How do we solve this problem? Given the dimensionality of the space, brute force
searches are impossible. Simple Monte Carlo (SMC; i.e., uniform random sampling)
will fail because it ignores the structure of the search space.

The spaces that we consider seem to possess three regularities, which we call a
“grainy” structure, illustrated schematically in Figure 2. Firstly, on many occa-
sions the network does not converge on a state that meets the decision criteria, so
some proportion of the parameter space does not correspond to any data pattern.
Secondly, the size of the regions vary a great deal. Some data patterns are elicited
by a wide range of parameter values, whereas others can be produced only by a small
range of values. Thirdly, small regions tend to cluster together. In these models,
there are likely to be regions where the model consistently chooses the dominant
phoneme and makes the correspondingly appropriate lexical decision. However,
there will also be large regions in which the models always choose “nonword” ir-

/ S T Fo—_ — ;{'

/ N "‘\./
Py ei7
~ /

b S

~

)

Figure 2: A parameter space with “grainy” structure. Each region corresponds to
a single data pattern that the model can generate. Regions vary in size, and small
regions cluster together.

respective of whether the stimulus is a word. Along the borders between regions,
however, there might be lots of smaller “transition regions”, and these regions will
tend to be near one another.

The consequence of this structure is that the size of the region in which the process
is currently located provides extensive information about the number of regions
that are likely to lie nearby. In a small region, there will probably be other small
regions nearby, so a fine-grained search is required in order to find them. However,
a fine-grained search process will get stuck in a large region, taking tiny steps when
great leaps are required. Our algorithm exploits this structure by using MCMC
to estimate a different parameter sampling distribution p(@|r;) for every region r;
that it encounters, and then cycling through these distributions in order to sample
parameter sets. The procedure can be reduced to three steps:

1. Set i = 0, m = 0. Sample 0 from p(f|r¢), a uniform distribution over the
space. If 8 does not generate a valid data pattern, repeat Step 1.

2. Set m = m + 1 and then ¢ = m. Record the new pattern, and use MCMC
to estimate p(@|r;).

3. Sample 6 from p(Q|r;). If 6 generates a new pattern, return to Step 2.
Otherwise, set ¢ = mod(i,m) + 1, and repeat Step 3.

The process of estimating p(f|r;) is a fairly straightforward application of MCMC
[7]. We specify a uniform jumping distribution over a small hypersphere centered
on the current point # in the parameter space, accepting candidate points if and
only if they produce the same pattern as . After collecting enough samples, we
calculate the mean and variance-covariance matrix for these observations, and use
this to estimate an ellipsoid around the mean, as an approximation to the i-th
region. However, since we want to find points in the bordering regions, the the
estimated ellipsoid is deliberately oversized. The sampling distribution p(6|r;) is
simply a uniform distribution over the ellipsoid.

Unlike SMC (or even a more standard application of MCMC), our algorithm has
the desirable property that it focuses on each region in equal proportion, irrespec-
tive of its size. Not only that, because the parameter space is high dimensional,
the vast majority of the distribution p(6|r;) will actually lie near the edges of the
ellipsoid: that is, the area just outside of the i-th region. Consequently, we search
primarily along the edges of the regions that we have already discovered, paying
closer attention to the small regions. The overall distribution p(6) is essentially a
mixture distribution that assigns higher density to points known to lie near many
regions.

5 Testing the Algorithm

In the absence of analytic results, the algorithm was evaluated against standard
SMC. The first test applied both to a simple toy problem possessing a grainy struc-
ture. Inside a hypercube [0,1]¢, an assortment of large and small regions (also
hypercubes) were defined using unevenly spaced grids so that all the regions neigh-
bored each other (d ranged from 3 to 6). In higher dimensions (d > 4), SMC did not
find all of the regions. In contrast, the MCMC algorithm found all of the regions,
and did so in a reasonable amount of time. Overall, the MCMC-based algorithm is
slower than SMC at the beginning of the search due to the time required for region
estimation. However, the time required to learn the structure of the parameter
space is time well spent because the search becomes more efficient and successful,
paying large dividends in time and accuracy in the end.

As a second test, we applied the algorithms to simplified versions of TRACE, con-
structed so that even SMC might work reasonably well. In one reduced model,
for instance, only phoneme responses were considered. In the other, only lexical
responses were considered. Weak and strong constraints (Table 2) were imposed on
both models. In all cases, MCMC found as many or more patterns than SMC, and
all SMC patterns were among the MCMC patterns.

6 Application to Models of Phoneme Perception

Next we ran the search algorithm on the full versions of TRACE and MERGE, using
both the strong and weak constraints (Table 2). The number of patterns discovered
in each case is summarized in Figure 3. In this experimental design MERGE is more
complex than TRACE, although the extent of this effect is somewhat dependent on
the choice of constraints. When strong constraints are applied TRACE (27 patterns)
is nested within MERGE (67 patterns), which produces 148% more patterns. How-
ever, when these constraints are eased, the nesting relationship disappears, and
MERGE (73 patterns) produces only 40% more patterns than TRACE (52 patterns).
Nevertheless, it is noteworthy that the behavior of each is highly constrained, pro-
ducing less than 100 of the 4% x 36 = 2,985,984 patterns available. Also, for both
models (under both sets of constraints), the vast majority of the parameter space
was occupied by only a few patterns.

A second question of interest is whether each model’s ouput veers far from human
performance (Table 1). To answer this, we classified every data pattern in terms of
the number of mismatches from the human-like pattern (from 0 to 12), and counted
how frequently the model patterns fell into each class. The results, shown in Fig-
ure 4, are quite similar and orderly for both models. The choice of constraints had
little effect, and in both cases the TRACE distribution (open circles) is a little closer
to the human-like pattern than the MERGE distribution (closed circles). Even so,
both models are remarkably human-like when considered in light of the distribution
of all possible patterns (cross hairs). In fact, the probability is virtually zero that
a “random model” (consisting of a random sample of patterns) would display such
a low mismatch frequency.

Building on this analysis, we looked for qualitative differences in the types of mis-
matches made by each model. Since the choice of constraints made no difference,
Figure 5 shows the mismatch profiles under weak constraints. Both models produce
no mismatches in some conditions (e.g., bB-phoneme identification, vZ-lexical deci-
sion) and many in others (e.g., gB-lexical decision). Interestingly, TRACE and MERGE
produce similar mismatch profiles for lexical decision, and a comparable number of
mismatches (108 vs. 124). However, striking qualitative differences are evident for

Wesk Constraints Strong Constraints

TRACE TRACE
40

MERGE MERGE

Figure 3: Venn diagrams showing the number of patterns discovered for both models
under both types of constraint.

04r

-0~ Weak TRACE

—o— Strong TRACE
—=— Weak MERGE
03} —e— Strong MERGE
—— All Patterns

Proportion of Patterns

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of Mismatches

Figure 4: Mismatch distributions for all four models plus the data space. The
0-point corresponds to the lone human-like pattern contained in all distributions.

phoneme decisions, with MERGE producing mismatches in conditions that TRACE
does not (e.g., vB, vZ). When the two graphs are compared, an asymmetry is evident
in the frequency of mismatches across tasks: MERGE makes phonemic mismatches
with about the same frequency as lexical errors (139 vs. 124), whereas TRACE does
so less than half as often (56 vs. 108).

The mismatch asymmetry accords nicely with the architectures shown in Figure 1.
The two models make lexical decisions in an almost identical manner: phonemic
information feeds into the lexical decision layer, from which a decision is made. It
should then come as no surprise that lexical processing in TRACE and MERGE is so
similar. In contrast, phoneme processing is split between two layers in MERGE but
confined to one in TRACE. The two layers dedicated to phoneme processing provide
MERGE an added degree of flexibility (i.e., complexity) in generating data patterns.
This shows up in many ways, not just in MERGE’s ability to produce mismatches in
more conditions than TRACE. For example, these mismatches yield a wider range
of phoneme responses. Shown above each bar in Figure 5 is the phoneme that was
misrecognized in the given condition. TRACE only misrecogized the phoneme as /g/
whereas MERGE misrecognized it as /g/, /z/, and /v/.

These analyses describe a few consequences of dividing processing between two
layers, as in MERGE, and in doing so creating a more complex model. On the
basis of performance (i.e., fit) alone, this additional complexity is unnecessary for
modeling phoneme perception because the simpler architecture of TRACE simulates
human data as well as MERGE. If MERGE’s design is to be preferred, the additional
complexity must be justifed for other reasons [6].

55 : S5 IV
50 phoneme : lexical 50 phoneme [] : lexical
45 : 45 :
: nw
4] 40 B 40 /g/ . M jog
2 / £ hd . —
g 3 o g 35 e
& M £ _ nw
5 30 . nw 5 0 . M
5 25t 9 : ™ jog 5 25 '
3 . nw g 12/
€ 20 € 20
> . > .
Z 15 | jog Z 15 Cow
10 : 10 -~ [Tioh
5 . 5 . I’
oL~ - A A A ol— A . A A
bBgBvBzZgZvZ bB gB vBzZgZvZ bBgBvBzZgZvZ bB gB vBzZgZvZ
TRACE MERGE

Figure 5: Mismatch profiles for both TRACE and MERGE when the weak constraints
are applied. Conditions are denoted by their phoneme blend.

7 Conclusions

The results of this preliminary evaluation suggest that the MCMC-based algorithm
is a promising method for comparing connectionist models. Although it was de-
veloped to compare localist models like TRACE and MERGE, it may be broadly
applicable whenever the search space exhibits this “grainy” structure. Indeed, the
algorithm could be a general tool for designing, comparing, and evaluating connec-
tionist models of human cognition. Plans are underway to extend the approach to
other experimental designs, dependent measures (e.g., reaction time), and models.

Acknowledgements

The authors were supported by NIH grant RO1-MH57472 awarded to IJM and MAP. DJN
was also supported by a grant from the Office of Research at OSU. We thank Nancy Briggs,
Cheongtag Kim and Yong Su for helpful discussions.

References

[1] Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions
on Information Theory 42, 40-47.

[2] Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes
and information in data. IEEE Transactions on Information Theory 47, 1712-1717.

[3] Balasubramanian, V. (1997). Statistical inference, Occam’s razor and statistical me-
chanics on the space of probability distributions. Neural Computation, 9, 349-368.

[4] Myung, I. J., Balasubramanian, V., & Pitt, M. A. (2000). Counting probability dis-
tributions: Differential geometry and model selection. Proceedings of the National
Academy of Sciences USA, 97, 11170-11175.

[6] McClelland, J. L. & Elman, J. L. (1986). The TRACE model of speech perception.
Cognitive Psychology, 18, 1-86.

[6] Norris, D., McQueen, J. M. & Cutler, A. (2000). Merging phonetic and lexical infor-
mation in phonetic decision-making. Behavioral & Brain Sciences, 23, 299-325.

[7] Gilks, W. R. , Richardson, S., & Spiegelhalter, D. J. (1995). Markov Chain Monte
Carlo in Practice. London: Chapman and Hall.

