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Abstract

We propose a method for sequential Bayesian kernel regression. As is
the case for the popular Relevance Vector Machine (RVM) [10, 11], the
method automatically identifies the number and locations of the kernels.
Our algorithm overcomes some of the computational difficulties related
to batch methods for kernel regression. It is non-iterative, and requires
only a single pass over the data. It is thus applicable to truly sequen-
tial data sets and batch data sets alike. The algorithm is based on a
generalisation of Importance Sampling, which allows the design of in-
tuitively simple and efficient proposal distributions for the model param-
eters. Comparative results on two standard data sets show our algorithm
to compare favourably with existing batch estimation strategies.

1 Introduction

Bayesian kernel methods, including the popular Relevance Vector Machine (RVM) [10,
11], have proved to be effective tools for regression and classification. For the RVM the
sparsity constraints are elegantly formulated within a Bayesian framework, and the result of
the estimation is a mixture of kernel functions that rely on only a small fraction of the data
points. In this sense it bears resemblance to the popular Support Vector Machine (SVM)
[13]. Contrary to the SVM, where the support vectors lie on the decision boundaries, the
relevance vectors are prototypical of the data. Furthermore, the RVM does not require any
constraints on the types of kernel functions, and provides a probabilistic output, rather than
a hard decision.

Standard batch methods for kernel regression suffer from a computational drawback in that
they are iterative in nature, with a computational complexity that is normally cubic in the
number of data points at each iteration. A large proportion of the research effort in this area
is devoted to the development of estimation algorithms with reduced computational com-
plexity. For the RVM, for example, a strategy is proposed in [12] that exploits the structure
of the marginal likelihood function to significantly reduce the number of computations.

In this paper we propose a full Bayesian formulation for kernel regression on sequential
data. Our algorithm is non-iterative, and requires only a single pass over the data. It is
equally applicable to batch data sets by presenting the data points one at a time, with the
order of presentation being unimportant. The algorithm is especially effective for large data
sets. As opposed to batch strategies that attempt to find the optimal solution conditional
on all the data, the sequential strategy includes the data one at a time, so that the poste-



rior exhibits a tempering effect as the amount of data increases. Thus, the difficult global
estimation problem is effectively decomposed into a series of easier estimation problems.

The algorithm itself is based on a generalisation of Importance Sampling, and recursively
updates a sample based approximation of the posterior distribution as more data points
become available. The proposal distribution is defined on an augmented parameter space,
and is formulated in terms of model moves, reminiscent of the Reversible Jump Markov
Chain Monte Carlo (RJ-MCMC) algorithm [5]. For kernel regression these moves may
include update moves to refine the kernel locations, birth moves to add new kernels to
better explain the increasing data, and death moves to eliminate erroneous or redundant
kernels.

The remainder of the paper is organised as follows. In Section 2 we outline the details of
the model for sequential Bayesian kernel regression. In Section 3 we present the sequential
estimation algorithm. Although we focus on regression, the method extends straightfor-
wardly to classification. It can, in fact, be applied to any model for which the posterior can
be evaluated up to a normalising constant. We illustrate the performance of the algorithm
on two standard regression data sets in Section 4, before concluding with some remarks in
Section 5.

2 Model Description

The data is assumed to arrive sequentially as input-output pairs(xt, yt), t = 1, 2, · · · ,
xt ∈ Rd, yt ∈ R. For kernel regression the output is assumed to follow the model

yt = β0 +
∑k

i=1
βiK(xt, µi) + vt, vt ∼ N(0, σ2

y),

wherek is the number of kernel functions, which we will consider to be unknown,βk =
(β0 · · ·βk) are the regression coefficients,Uk = (µ1 · · ·µk) are the kernel centres, andσ2

y
is the variance of the Gaussian observation noise. Assuming independence the likelihood
for all the data points observed up to timet, denoted byYt = (y1 · · · yt), can be written as

p(Yt|k, βk,Uk, σ2
y) = N(Yt|Kkβk, σ2

yIt), (1)

where Kk denotes thet × (k + 1) kernel matrix with [Kk]s,1 = 1 and [Kk]s,l =
K(xs, µl−1) for l > 1, andIn denotes then-dimensional identity matrix. For the un-
known model parametersθk = (βk,Uk, σ2

y, σ2
β) we assume a hierarchical prior that takes

the form
p(k,θk) = p(k)p(βk, σ2

β)p(Uk)p(σ2
y), (2)

with
p(k) ∝ λk exp(−λ)/k!, k ∈ {1 · · · kmax}
p(βk, σ2

β) = N(βk|0, σ2
βIk+1)IG(σ2

β |aβ , bβ)

p(Uk) =
∏k

l=1

∑t

s=1
δxs(µl)/t

p(σ2
y) = IG(σ2

y|ay, by),

whereδx(·) denotes the Dirac delta function with mass atx, andIG(·|a, b) denotes the
Inverted Gamma distribution with parametersa andb. The prior on the number of kernels
is set to be a truncated Poisson distribution, with the meanλ and the maximum number of
kernelskmax assumed to be fixed and known. The regression coefficients are drawn from
an isotropic Gaussian prior with varianceσ2

β in each direction. This variance is, in turn,
drawn from an Inverted Gamma prior. This is in contrast with the Automatic Relevance
Determination (ARD) prior [8], where each coefficient has its own associated variance.
The prior for the kernel centres is assumed to be uniform over the grid formed by the input



datapoints available at the current time step. Note that the support for this prior increases
with time. Finally, the noise variance is assumed to follow an Inverted Gamma prior. The
parameters of the Inverted Gamma priors are assumed to be fixed and known.

Given the likelihood and prior in (1) and (2), respectively, it is straightforward to obtain an
expression for the full posterior distributionp(k,θk|Yt). Due to conjugacy this expression
can be marginalised over the regression coefficients, so that the marginal posterior for the
kernel centres can be written as

p(k,Uk|σ2
y, σ2

β ,Yt) ∝
|Bk|1/2 exp(−YT

tPkYt/2σ2
y)p(k)p(Uk)

(2πσ2
y)t/2(σ2

β)k+1/2
, (3)

with Bk = (KT
kKk/σ2

y + Ik+1/σ2
β)−1 andPk = It −KkBkKT

k/σ2
y. It will be our ob-

jective to approximate this distribution recursively in time as more data becomes available,
using Monte Carlo techniques. Once we have samples for the kernel centres, we will re-
quire new samples for the unknown parameters(σ2

y, σ2
β) at the next time step. We can

obtain these by first sampling for the regression coefficients from the posterior

p(βk|k,Uk, σ2
y, σ2

β ,Yt) = N(βk|β̂k,Bk), (4)

with β̂k = BkKT
kYt, and conditional on these values, sampling for the unknown parame-

ters from the posteriors

p(σ2
y|k, βk,Uk,Yt) = IG(σ2

y|ay + t/2, by + eTtet/2)

p(σ2
β |k, βk) = IG(σ2

β |aβ + (k + 1)/2, bβ + βT
kβk/2),

(5)

with et = Yt −Kkβk the model approximation error.

Since the number of kernel functions to use is unknown the marginal posterior in (3) is
defined over a discrete space of variable dimension. In the next section we will present a
generalised importance sampling strategy to obtain Monte Carlo approximations for distri-
butions of this nature recursively as more data becomes available.

3 Sequential Estimation

Recall that it is our objective to recursively update a Monte Carlo representation of the pos-
terior distribution for the kernel regression parameters as more data becomes available. The
method we propose here is based on a generalisation of the popular importance sampling
technique. Its application extends to any model for which the posterior can be evaluated up
to a normalising constant. We will thus first present the general strategy, before outlining
the details for sequential kernel regression.

3.1 Generalised Importance Sampling

Our aim is to recursively update a sample based approximation of the posteriorp(k, θk|Yt)
of a model parameterised byθk as more data becomes available. The efficiency of impor-
tance sampling hinges on the ability to design a good proposal distribution,i.e. one that
approximates the target distribution sufficiently well. Designing an efficient proposal distri-
bution to generate samples directly in the target parameter space is difficult. This is mostly
due to the fact that the dimension of the parameter space is generally high and variable.
To circumvent these problems we augment the target parameter space with an auxiliary
parameter space, which we will associate with the parameters at the previous time step. We
now define the target distribution over the resulting joint space as

πt(k, θk; k′, θ′k′) = p(k, θk|Yt)q′t(k
′, θ′k′ |k, θk). (6)



This joint clearly admits the desired target distribution as a marginal. Apart from some
weak assumptions, which we will discuss shortly, the distributionq′t is entirely arbitrary,
and may depend on the data and the time step. In fact, in the application to the RVM we
consider here we will set it toq′t(k

′, θ′k′ |k, θk) = δ(k,θk)(k′,θ
′
k′), so that it effectively dis-

appears from the expression above. A similar strategy of augmenting the space to simplify
the importance sampling procedure has been exploited before in [7] to develop efficient
Sequential Monte Carlo (SMC) samplers for a wide range of models. To generate samples
in this joint space we define the proposal for importance sampling to be of the form

Qt(k, θk; k′, θ′k′) = p(k′,θ′k′ |Yt−1)qt(k,θk|k′,θ′k′), (7)

whereqt may again depend on the data and the time step. This proposal embodies the
sequential character of our algorithm. Similar to SMC methods [3] it generates samples
for the parameters at the current time step by incrementally refining the posterior at the
previous time step through the distributionqt. Designing efficient incremental proposals
is much easier than constructing proposals that generate samples directly in the target pa-
rameter space, since the posterior is unlikely to undergo dramatic changes over consecutive
time steps. To compensate for the discrepancy between the proposal in (7) and the joint
posterior in (6) the importance weight takes the form

Wt(k, θk; k′, θ′k′) =
p(k, θk|Yt)q′t(k

′,θ′k′ |k, θk)
p(k′, θ′k′ |Yt−1)qt(k, θk|k′, θ′k′)

. (8)

Due to the construction of the joint in (6), marginal samples in the target parameter space
associated with this weighting will indeed be distributed according to the target posterior
p(k,θk|Yt). As might be expected the importance weight in (8) is similar in form to
the acceptance ratio for the RJ-MCMC algorithm [5]. One notable difference is that the
reversibility condition is not required, so that for a givenqt, q′t may be arbitrary, as long as
the ratio in (8) is well-defined.

In practice it is often necessary to design a number of candidate moves to obtain an efficient
algorithm. Examples include update moves to refine the model parameters in the light of
the new data, birth moves to add new parameters to better explain the new data, death moves
to remove redundant or erroneous parameters, and many more. We will denote the set of
candidate moves at timet by {αt,i, qt,i, q

′
t,i}M

i=1, whereαt,i is the probability of choosing

move i, with
∑M

i=1 αt,i = 1. For each movei the importance weight is computed by
substituting the correspondingqt,i andq′t,i into (8). Note that the probability of choosing
a particular move may depend on the old state and the time step, so that moves may be
included or excluded as is appropriate.

3.2 Sequential Kernel Regression

We will now present the details for sequential kernel regression. Our main concern will
be the recursive estimation of the marginal posterior for the kernel centres in (3). This
distribution is conditional on the parameters(σ2

y, σ2
β), for which samples can be obtained

at each time step from the corresponding posteriors in (4) and (5).

To sample for the new kernel centres we will consider three kinds of moves: a zero move
qt,1, a birth moveqt,2, and a death moveqt,3. The zero move leaves the kernel centres
unchanged. The birth move adds a new kernel at a uniformly randomly chosen location over
the grid of unoccupied input data points. The death move removes a uniformly randomly
chosen kernel. Fork = 0 only the birth move is possible, whereas the birth move is
impossible fork = kmax or k = t. Similar to [5] we set the move probabilities to

αt,2 = c min{1, p(k + 1)/p(k)}
αt,3 = c min{1, p(k − 1)/p(k)}
αt,1 = 1− αt,2 − αt,3



in all other cases. In the abovec ∈ (0, 1) is a parameter that tunes the relative frequency of
the dimension changing moves to the zero move. For these choices the importance weight
in (8) becomes

Wt,i(k,Uk; k′,U′
k′) ∝

|Bk|1/2 exp(−(YT
tPkYt −YT

t−1P
′
k′Yt−1)/2σ2

y)
|B′

k′ |1/2(2πσ2
y)1/2(σ2

β)k−k′/2

× λk−k′(t− 1)(k′ − 1)!
t(k − 1)!qt,i(k,Uk|k′,U′

k′)
,

where the primed variables are those corresponding to the posterior at timet − 1. For
the zero move the parameters are left unchanged, so that the expression forqt,1 in the
importance weight becomes unity. This is often a good move to choose, and captures the
notion that the posterior rarely changes dramatically over consecutive time steps. For the
birth move one new kernel is added, so thatk = k′ + 1. The centre for this kernel is
uniformly randomly chosen from the grid of unoccupied input data points. This means that
the expression forqt,2 in the importance weight reduces to1/(t−k′), since there aret−k′
such data points. Similarly, the death move removes a uniformly randomly chosen kernel,
so thatk = k′ − 1. In this case the expression forqt,3 in the importance weight reduces
to 1/k′. It is straightforward to design numerous other moves,e.g. an update move that
perturbs existing kernel centres. However, we found that the simple moves presented yield
satisfactory results while keeping the computational complexity acceptable.

We conclude this section with a summary of the algorithm.

Algorithm 1: Sequential Kernel Regression

Inputs:

• Kernel functionK(·, ·), model parameters(λ, kmax, ay, by, aβ , bβ), fraction of dimension
change movesc, number of samples to approximate the posteriorN .

Initialisation: t = 0

• For i = 1 · · ·N , setk(i) = 0, β
(i)
k = ∅, U(i)

k = ∅, and sampleσ2(i)
y ∼ p(σ2

y), σ
2(i)
β ∼ p(σ2

β).

Generalised Importance Sampling Step: t > 0

• For i = 1 · · ·N ,

− Sample a movej(i) so thatP (j(i) = l) = αt,l.

− If j(i) = 1 (zero move), set̃U(i)
k = U

(i)
k andk̃(i) = k(i).

Else if j(i) = 2 (birth move), formŨ
(i)
k by uniformly randomly adding a kernel at one of

the unoccupied data points, and setk̃(i) = k(i) + 1.

Else if j(i) = 3 (death move), form̃U(i)
k by uniformly randomly deleting one of the existing

kernels, and set̃k(i) = k(i) − 1.

• For i = 1 · · ·N , compute the importance weightsW
(i)
t ∝ Wt(k̃

(i), Ũ
(i)
k ; k(i),U

(i)
k ), and

normalise.

• For i = 1 · · ·N , sample the nuisance parametersβ̃
(i)

k ∼ p(βk|k̃(i), Ũ
(i)
k , σ

2(i)
y , σ

2(i)
β ,Yt),

σ̃
2(i)
β ∼ p(σ2

β |k̃(i), β̃
(i)

k ), σ̃
2(i)
y ∼ p(σ2

y|k̃(i), β̃
(i)

k , Ũ
(i)
k ,Yt).

Resampling Step: t > 0

• Multiply / discard samples{k̃(i), θ̃
(i)

k } with respect to high / low importance weights{W (i)
t }

to obtainN samples{k(i), θ
(i)
k }.

¥



Eachof the samples is initialised to be empty,i.e. no kernels are included. Initial values for
the variance parameters are sampled from their corresponding prior distributions. Using
the samples before resampling, a Minimum Mean Square Error (MMSE) estimate of the
clean data can be obtained as

Ẑt =
∑N

i=1
W

(i)
t K̃(i)

k β̃
(i)

k .

The resampling step is required to avoid degeneracy of the sample based representation.
It can be performed by standard procedures such as multinomial resampling [4], strati-
fied resampling [6], or minimum entropy resampling [2]. All these schemes are unbiased,

so that the number of timesNi the sample(k̃(i), θ̃
(i)

k ) appears after resampling satisfies
E(Ni) = NW

(i)
t . Thus, resampling essentially multiplies samples with high importance

weights, and discards those with low importance weights.

The algorithm requires only a single pass through the data. The computational complexity
at each time step isO(N). For each sample the computations are dominated by the com-
putation of the matrixBk, which requires a(k + 1)-dimensional matrix inverse. However,
this inverse can be incrementally updated from the inverse at the previous time step using
the techniques described in [12], leading to substantial computational savings.

4 Experiments and Results

In this section we illustrate the performance of the proposed sequential estimation algo-
rithm on two standard regression data sets.

4.1 Sinc Data

This experiment is described in [1]. The training data is taken to be the sinc function,i.e.
sinc(x) = sin(x)/x, corrupted by additive Gaussian noise of standard deviationσy = 0.1,
for 50 evenly spaced points in the intervalx ∈ [−10, 10]. In all the runs we presented
these points to the sequential estimation algorithm in random order. For the test data we
used 1000 points over the same interval. We used a Gaussian kernel of width 1.6, and
set the fixed parameters of the model to(λ, kmax, ay, by, aβ , bβ) = (1, 50, 0, 0, 0, 0). For
these settings the prior on the variances reduces to the uninformative Jeffreys’ prior. The
fraction of dimension change moves was set toc = 0.25. It should be noted that the
algorithm proved to be relatively insensitive to reasonable variations in the values of the
fixed parameters.

The left side of Figure 1 shows the test error as a function of the number of samplesN .
These results were obtained by averaging over 25 random generations of the training data
for each value ofN . As expected, the error decreases with an increase in the number of
samples. No significant decrease is obtained beyondN = 250, and we adopt this value for
subsequent comparisons. A typical MMSE estimate of the clean data is shown on the right
side of Figure 1.

In Table 1 we compare the results of the proposed sequential estimation algorithm with a
number of batch strategies for the SVM and RVM. The results for the batch algorithms are
duplicated from [1, 9]. The error for the sequential algorithm is slightly higher. This is due
to the stochastic nature of the algorithm, and the fact that it uses only very simple moves
that take no account of the characteristics of the data during the move proposition. This
increase should be offset against the algorithm simplicity and efficiency. The error could
be further decreased by designing more complex moves.
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Figure 1: Results for the sinc experiment. Test error as a function of the number of
samples (left), and example fit (right), showing the uncorrupted data (blue circles), noisy
data (red crosses) and MMSE estimate (green squares). For this example the test error was
0.0309 and an average of 6.18 kernels were used.

Method Test Error # Kernels Noise Estimate
Figueiredo 0.0455 7.0 −
SVM 0.0519 28.0 −
RVM 0.0494 6.9 0.0943
VRVM 0.0494 7.4 0.0950
MCMC 0.0468 6.5 −
Sequential RVM 0.0591 4.5 0.1136

Table 1: Comparative performance results for the sinc data. The batch results are
reproduced from [1, 9].

4.2 Boston Housing Data

We also applied our algorithm to the popular Boston housing data set. We considered
random train / test partitions of the data of size 300 / 206. We again used a Gaussian kernel,
and set the width parameter to 5. For the model and algorithm parameters we used values
similar to those for the sinc experiment, except for settingλ = 5 to allow a larger number
of kernels. The results are summarised in Table 2. These were obtained by averaging over
10 random partitions of the data, and setting the number of samples toN = 250. The test
error is comparable to those for the batch strategies, but far fewer kernels are required.

Method Test Error # Kernels
SVM 8.04 142.8
RVM 7.46 39.0
Sequential RVM 7.18 25.29

Table 2: Comparative performance results for the Boston housing data. The batch
results are reproduced from [10].

5 Conclusions

In this paper we proposed a sequential estimation strategy for Bayesian kernel regression.
Our algorithm is based on a generalisation of importance sampling, and incrementally up-
dates a Monte Carlo representation of the target posterior distribution as more data points



becomeavailable. It achieves this through simple and intuitive model moves, reminiscent
of the RJ-MCMC algorithm. It is further non-iterative, and requires only a single pass over
the data, thus overcoming some of the computational difficulties associated with batch es-
timation strategies for kernel regression. Our algorithm is more general than the kernel
regression problem considered here. Its application extends to any model for which the
posterior can be evaluated up to a normalising constant. Initial experiments on two stan-
dard regression data sets showed our algorithm to compare favourably with existing batch
estimation strategies for kernel regression.
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