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Abstract

Learning from ambiguous training data is highly relevant in many
applications. We present a new learning algorithm for classification
problems where labels are associated with sets of pattern instead
of individual patterns. This encompasses multiple instance learn-
ing as a special case. Our approach is based on a generalization
of linear programming boosting and uses results from disjunctive
programming to generate successively stronger linear relaxations of
a discrete non-convex problem.

1 Introduction

In many applications of machine learning, it is inherently difficult or prohibitively
expensive to generate large amounts of labeled training data. However, it is often
considerably less challenging to provide weakly labeled data, where labels or annota-
tions y are associated with sets of patterns or bags X instead of individual patterns
x ∈ X. These bags reflect a fundamental ambiguity about the correspondence of
patterns and the associated label which can be expressed logically as a disjunction
of the form:

∨

x∈X(x is an example of class y). In plain English, each labeled bag
contains at least one pattern (but possibly more) belonging to this class, but the
identities of these patterns are unknown.

A special case of particular relevance is known as multiple instance learning [5]
(MIL). In MIL labels are binary and the ambiguity is asymmetric in the sense that
bags with negative labels are always of size one. Hence the label uncertainty is
restricted to members of positive bags. There are many interesting problems where
training data of this kind arises quite naturally, including drug activity prediction
[5], content-based image indexing [10] and text categorization [1]. The ambiguity
typically arises, because of polymorphisms allowing multiple representations, e.g. a
molecule which can be in different conformations, or because of a part/whole am-



biguity, e.g. annotations may be associated with images or documents where they
should be attached to objects in an image or passages in a document. Notice also
that there are two intertwined objectives: the goal may be to learn a pattern-level
classifier from ambiguous training examples, but sometimes one may be primarily
interested in classifying new bags without necessarily resolving the ambiguity for
individual patterns.

A number of algorithms have been developed for MIL, including special purpose
algorithms using axis-parallel rectangular hypotheses [5], diverse density [10, 14],
neural networks [11], and kernel methods [6]. In [1] two versions of a maximum-
margin learning architecture for solving the multiple instance learning problem have
been presented. Because of the combinatorial nature of the problem, a simple
optimization heuristic was used in [1] to learn discriminant functions. In this paper,
we take a more principled approach by carefully analyzing the nature of the resulting
optimization problem and by deriving a sequence of successively stronger relaxations
that can be used to compute lower and upper bounds on the objective. Since it
turns out that exploiting sparseness is a crucial aspect, we have focused on a linear
programming formulation by generalizing the LPBoost algorithm [7, 12, 4] we call
the resulting method Disjunctive Programming Boosting (DPBoost).

2 Linear Programming Boosting

LPBoost is a linear programming approach to boosting, which aims at learning
ensemble classifiers of the form G(x) = sgnF (x) with F (x) =

∑

k αkhk(x), where
hk : <d → {−1, 1}, k = 1, . . . , n are the so-called base classifiers, weak hypotheses,
or features and αk ≥ 0 are combination weights. The ensemble margin of a labeled
example (x, y) is defined as yF (x).

Given a set of labeled training examples {(x1, y1), . . . , (xm, ym)}, LPBoost formu-
lates the supervised learning problem using the 1-norm soft margin objective

min
α, ξ

n
∑

k=1

αk + C

m
∑

i=1

ξi s.t. yiF (xi) ≥ 1 − ξi, ξi ≥ 0, ∀i, αk ≥ 0, ∀k . (1)

Here C > 0 controls the tradeoff between the Hinge loss and the L1 regularization
term. Notice that this formulation remains meaningful even if all training examples
are just negative or just positive [13].

Following [4] the dual program of Eq. (1) can be written as

max
u

m
∑

i=1

ui, s.t.
m
∑

i=1

uiyihk(xi) ≤ 1, ∀k, 0 ≤ ui ≤ C, ∀i . (2)

It is useful to take a closer look at the KKT complementary conditions

ui (yiF (xi) + ξi − 1) = 0, and αk

(

m
∑

i=1

uiyihk(xi) − 1

)

= 0. (3)

Since the optimal values of the slack variables are implicitly determined by α as
ξi(α) = [1 − yiF (xi)]+, the first set of conditions states that ui = 0 whenever
yiF (xi) > 1. Since ui can be interpreted as the “misclassification” cost, this implies
that only instances with tight margin constraints may have non-vanishing associated
costs. The second set of conditions ensures that αk = 0, if

∑m

i=1
uiyihk(xi) < 1,

which states that a weak hypothesis hk is never included in the ensemble, if its
weighted score

∑

i uiyihk(xi) is strictly below the maximum score of 1. So a typical



LPBoost solution may be sparse in two ways: (i) Only a small number of weak
hypothesis with αk > 0 may contribute to the ensemble and (ii) the solution may
only depend on a subset of the training data, i.e. those instances with ui > 0.

LPBoost exploits the sparseness of the ensemble by incrementally selecting columns
from the simplex tableau and optimizing the smaller tableau. This amounts to
finding in each round a hypothesis hk for which the constraint in Eq. (2) is violated,
adding it to the ensemble and re-optimizing the tableau with the selected columns.
As a column selection heuristic the authors of [4] propose to use the magnitude of
the violation, i.e. pick the weak hypothesis hk with maximal score

∑

i uiyihk(xi).

3 Disjunctive Programming Boosting

In order to deal with pattern ambiguity, we employ the disjunctive programming
framework [2, 9]. In the spirit of transductive large margin methods [8, 3], we
propose to estimate the parameters α of the discriminant function in a way that
achieves a large margin for at least one of the patterns in each bag. Applying this
principle, we can compile the training data into a set of disjunctive constraints on
α. To that extend, let us define the following polyhedra

Hi(x) ≡

{

(α, ξ) : yi

∑

k

αkhk(x) + ξi ≥ 1

}

, Q ≡ {(α, ξ) : α, ξ ≥ 0} . (4)

Then we can formulate the following disjunctive program:

min
α,ξ

n
∑

k=1

αk + C

m
∑

i=1

ξi, s.t. (α, ξ) ∈ Q ∩
⋂

i

⋃

x∈Xi

Hi(x) . (5)

Notice that if |Xi| ≥ 2 then the constraint imposed by Xi is highly non-convex,
since it is defined via a union of halfspaces. However, for trivial bags with |Xi| = 1,
the resulting constraints are the same as in Eq. (1). Since we will handle these two
cases quite differently in the sequel, let us introduce index sets I = {i : |Xi| ≥ 2}
and J = {j : |Xj | = 1}.

A suitable way to define a relaxation to this non-convex optimization problem is
to replace the disjunctive set in Eq. (5) by its convex hull. As shown in [2], a
whole hierarchy of such relaxations can be built, using the fundamental fact that
cl-conv(A) ∩ cl-conv(B) ⊇ cl-conv(A ∩ B), where cl-conv(A) denotes the closure of
the convex hull of the limiting points of A. This means a tighter convex relaxation
is obtained, if we intersect as many sets as possible, before taking their convex hull.
Since repeated intersections of disjunctive sets with more than one element each
leads to an combinatorial blow-up in the number of constraints, we propose to in-
tersect every ambiguous disjunctive constraint with every non-ambiguous constraint
as well as with Q. This is also called a parallel reduction step [2]. It results in the
following convex relaxation of the constraints in Eq. (5)

(α, ξ)∈
⋂

i∈I

cl-conv





⋃

x∈Xi



Hi(x) ∩ Q ∩
⋂

j∈J

Hj(xj)







 , (6)

where we have abused the notation slightly and identified Xj = {xj} for bags with
one pattern. The rationale in using this relaxation is that the resulting convex
optimization problem is tractable and may provide a reasonably accurate approxi-
mation to the original disjunctive program, which can be further strengthened by
using it in combination with branch-and-bound search.



There is a lift-and-project representation of the convex hulls in Eq. (6), i.e. one
can characterize the feasible set as a projection of a higher dimensional polyhedron
which can be explicitly characterized [2].

Proposition 1. Assume a set of non-empty linear constraints Hi ≡ {z : Aiz ≥
bi} 6= ∅ is given. Then z ∈ cl-conv

⋃

i Hi if and only if there exist zj and ηj ≥ 0
such that

z =
∑

j

zj ,
∑

j

ηj = 1, Ajzj ≥ ηjbj .

Proof. [2]

Let us pause here briefly and recapitulate what we have achieved so far. We have
derived a LP relaxation of the original disjunctive program for boosting with am-
biguity. This relaxation was obtained by a linearization of the original non-convex
constraints. Furthermore, we have demonstrated how this relaxation can be im-
proved using parallel reduction steps.

Applying this linearization to every convex hull in Eq. (6) individually, notice that
one needs to introduce duplicates αx, ξx of the parameters α and slack variables ξ,
for every x ∈ Xi. In addition to the constraints αx

k, ξx
i , ξx

j , ηx
i ≥ 0 and

∑

x∈Xi
ηx

i = 1
the relevant constraint set for ambiguous bag Xi for i ∈ I of the resulting LP can
be written as

∀x ∈ Xi : yi

∑

k

αx
khk(x) + ξx

i ≥ ηx
i , (7a)

∀x ∈ Xi,∀j ∈ J : yj

∑

k

αx
khk(xj) + ξx

j ≥ ηx
i , (7b)

∀k, ∀j ∈ I ∪ J : αk =
∑

x∈Xi

αx
k, ξj =

∑

x∈Xi

ξx
j . (7c)

The first margin constraint in Eq. (7a) is the one associated with the specific pattern
x, while the second set of margin constraints in Eq. (7b) stems from the parallel
reduction performed with unambiguous bags. One can calculate the dual LP of
the above relaxation, the derivation of which can be found in the appendix. The
resulting program has a more complicated bound structure on the u-variables and
the following crucial constraints involving the data

∀i, ∀x ∈ Xi : yiu
x
i hk(x) +

∑

j∈J

yju
x
j hk(xj) ≤ ρik,

∑

i∈I

ρik = 1 . (8)

However, the size of the resulting problem is significant. As a result of linearization
and parallel reductions, the number of parameters in the primal LP is now O(q ·n+
q ·r), where q, r ≤ m denote the number of patterns in ambiguous and unambiguous
bags, compared to O(n + m) of the standard LPBoost. The number of constraints
(variables in the dual) has also been inflated significantly from O(m) to O(q·r+p·n)),
where p ≤ q is the number of ambiguous bags.

In order to maintain the spirit of LPBoost in dealing efficiently with a large-scale
linear program, we propose to maintain the column selection scheme of selecting
one or more αx

k in every round. Notice that the column selection can not proceed
independently because of the equality constraints

∑

x∈Xi
αx

k = αk for all Xi; in
particular, αx

k > 0 implies αk > 0, so that αz
k > 0 for at least some z ∈ Xi for each

Xi, i ∈ I. We hence propose to simultaneously add all columns {αx
k : x ∈ Xi, i ∈ I}

involving the same weak hypothesis and to prune those back after each boosting



round in order to exploit the expected sparseness of the solution. In order to select
a feature hk, we compute the following score

S(k) =
∑

i

ρ̄ik − 1, ρ̄ik ≡ max
x



yiu
x
i hk(x) +

∑

j∈J

yju
x
j hk(xj)



 . (9)

Notice that due to the block structure of the tableau, working with a reduced set of
columns also eliminates a large number of inequalities (rows). However, the large
set of q · r inequalities for the parallel reductions is still prohibitive.

In order to address this problem, we propose to perform incremental row selection
in an outer loop. Once we have converged to a column basis for the current relaxed
LP, we add a subset of rows corresponding to the most useful parallel reductions.
One can use the magnitude of the margin violation as a heuristic to perform this
row selection. Hence we propose to use the following score

T (x, j) = ηx
i − yj

∑

k

αx
khk(xj), where x ∈ Xi, i ∈ I, j ∈ J (10)

This means that for current values of the duplicated ensemble weights αx
k, one

selects the parallel reduction margin constraint associated with ambiguous pattern
x and unambiguous pattern j that is violated most strongly.

Although the margin constraints imposed by unambiguous training instances
(xj , yj) are redundant after we performed the parallel reduction step in Eq. (6),
we add them to the problem, because this will give us a better starting point with
respect to the row selection process, and may lead to a sparser solution. We hence
add the following constraints to the primal

yj

∑

k

αkhk(xj) + ξj ≥ 1, ∀j ∈ J , (11)

which will introduce additional dual variables uj , j ∈ J . Notice that in the worst
case where all inequalities imposed by ambiguous training instances Xi are vacuous,
this will make sure that one recovers the standard LPBoost formulation on the
unambiguous examples. One can then think of the row generation process as a way
of deriving useful information from ambiguous examples. This information takes
the form of linear inequalities in the high dimensional representation of the convex
hull and will sequentially reduce the version space, i.e. the set of feasible (α, ξ) pairs.

Algorithm 1 DPBoost Algorithm

1: initialize H = ∅, C = {ξi : i ∈ I ∪ J}, R = {ux
i : x ∈ Xi, i ∈ I} ∪ {uj : j ∈ J}

2: uj = 1

|J| , ux
i = 0, ξi = 0

3: repeat
4: repeat
5: column selection: select hk 6∈ H with maximal S(k)
6: H = H ∪ {hk}
7: C = C ∪ {αk} ∪ {αx

k : ∀x ∈ Xi,∀i ∈ I}
8: solve LP (C,R)
9: until max S(k) < ε

10: row selection: select a set S of pairs (x, j) 6∈ R with maximal T (x, j) > 0
11: R = R ∪ {ux

j : (x, j) ∈ S}, C = C ∪ {ξx
j : (x, j) ∈ S}

12: solve LP (C,R)
13: until max T (x, j) < ε
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Figure 1: (Left) Normalized intensity plot used to generate synthetic data sets.
(Right) Performance relative to the degree of label ambiguity. Mean and standard
deviation of the pattern-level classification accuracy plotted versus λ, for perfect-
knowledge (solid), perfect-selector (dotted), DPboost (dashed), and naive (dash-
dot) algorithms. The three plots correspond to data sets of size |I| = 10, 20, 30.

4 Experiments

We generated a set of synthetic weakly labeled data sets to evaluate DPboost on a
small scale. These were multiple-instance data sets, where the label uncertainty was
asymmetric; the only ambiguous bags (|Xi| > 1) were positive. More specifically, we
generated instances x ∈ [0, 1] × [0, 1] sampled uniformly at random from the white
(yi = 1) and black (yi = −1) regions of Figure 1, leaving the intermediate gray
area as a separating margin. The degree of ambiguity was controlled by generating
ambiguous bags of size k ∼ Poisson(λ) having only one positive and k − 1 negative
patterns. To control data set size, we generated a pre-specified number of ambiguous
bags, and the same number of singleton unambiguous bags.

As a proof of concept benchmark, we compared the classification perfomance of
DPboost with two other LPboost variants: perfect-knowledge, perfect-selector, and
naive algorithms. All variants use LPboost as their base algorithm and have slightly
different preprocessing steps to accomodate the MIL data sets. The first corresponds
to the supervised LPboost algorithm; i.e. the true pattern-level labels are used.
Since this algorithm does not have to deal with ambiguity, it will perform better
than DPboost. The second uses the true pattern-level labels to prune the negative
examples from ambiguous bags and solves the smaller supervised problem with
LPboost as above. This algorithm provides an interesting benchmark, since its
performance is the best we can hope for from DPboost. At the other extreme, the
third variant assumes the ambiguous pattern labels are equal to their respective
bag labels. For all algorithms, we used thresholded “RBF-like” features.

Figure 2 shows the discriminant boundary (black line), learned by each of the four
algorithms for a data set generated with λ = 3 and having 20 ambiguous bags
(i.e. |I| = 20, no. ambig. = 71, no. total = 91). The ambiguous patterns are
marked by “o”, unambiguous ones “x”, and the background is shaded to indicate
the value of the ensemble F (x) (clamped to [−3, 3]). It is clear from the shading that
the ensemble has a small number of active features for DPboost, perfect-selector
and perfect-knowledge algorithms. For each classifier, we report the pattern-level
classification accuracy for a uniform grid (21 x 21) of points. The sparsity of the dual
variables was also verified; less than 20 percent of the dual variables and reductions
were active.

We ran 5-fold cross-validation on the synthetic data sets for λ = 1, 3, 5, 7 and for
data sets having |I| = 10, 20, 30. Figure 1 (right side) shows the mean pattern-level
classification accuracy with error bars showing one standard deviation, as a function
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Figure 2: Discriminant boundaries learned by naive (accuracy = 53.3 %), DPboost
(85.3 %), perfect-selector (86.6 %) and perfect-knowledge (92.7 %) algorithms.

of the parameter λ.

5 Conclusion

We have presented a new learning algorithm for classification problems where labels
are associated with sets of pattern instead of individual patterns. Using synthetic
data, the expected behaviour of the algorithm has been demonstrated. Our current
implementation could not handle large data sets, and so improvements, followed by
a large-scale validation and comparison to other algorithms using benchmark MIL
data sets, will follow.
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Appendix

The primal variables are αk, αx
k, ξi, ξx

i , ξx
j , and ηx

i . The dual variables are ux and
ux

j for the margin constraints, and ρik, σi, and θi for the equality constraints on αk,
ξ and η, respectively.

The Lagrangian is given by

L =
∑

k

αk + C





∑

i

ξi +
∑

j

ξj



−
∑

i

∑

x∈Xi

ux
i

(

yi

∑

k

αx
khk(x) + ξx

i − ηx
i

)

−
∑

i

∑

x∈Xi

∑

j

ux
j

(

yj

∑

k

αx
khk(xj) + ξx

j − ηx
i

)

+
∑

i

θi

(

1 −
∑

x∈Xi

ηx
i

)

−
∑

i,k

ρik

(

αk −
∑

x∈Xi

αx
k

)

−
∑

i

σi

(

ξi −
∑

x∈Xi

ξx
i

)

−
∑

i,j

σij

(

ξj −
∑

x∈Xi

ξx
j

)

−
∑

i

∑

x∈Xi

∑

k

α̃x
kαx

k −
∑

i

∑

x∈Xi

ξ̃x
i ξx

i −
∑

i

∑

x∈Xi

∑

j

ξ̃x
j ξx

j −
∑

i

∑

x∈Xi

η̃x
i ηx

i .

Taking derivatives w.r.t. primal variables, leads to the following dual

max
∑

i

θi

s.t. θi ≤ ux
i +

∑

j

ux
j , ux

i ≤ C, ux
j ≤ σij ,

∑

i

σij ≤ C

yiu
x
i hk(x) +

∑

j

yju
x
j hk(xj) ≤ ρik,

∑

i

ρik = 1


