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Abstract

Recently, relevance vector machines (RVM) have been fashioned from a
sparse Bayesian learning (SBL) framework to perform supervised learn-
ing using a weight prior that encourages sparsity of representation. The
methodology incorporates an additional set of hyperparameters govern-
ing the prior, one for each weight, and then adopts a specific approxi-
mation to the full marginalization over all weights and hyperparameters.
Despite its empirical success however, no rigorous motivation for this
particular approximation is currently available. To address this issue, we
demonstrate that SBL can be recast as the application of a rigorous vari-
ational approximation to the full model by expressing the prior in a dual
form. This formulation obviates the necessity of assuming any hyperpri-
ors and leads to natural, intuitive explanations of why sparsity is achieved
in practice.

1 Introduction

In an archetypical regression situation, we are presented with a collection ofN regres-
sor/target pairs{φi ∈ <M , ti ∈ <}N

i=1 and the goal is to find a vector of weightsw such
that, in some sense,

ti ≈ φT
i w, ∀i or t ≈ Φw, (1)

wheret , [t1, . . . , tN ]T andΦ , [φ1, . . . ,φN ]T ∈ <N×M . Ideally, we would like to
learn this relationship such that, given a new training vectorφ∗, we can make accurate
predictions oft∗, i.e., we would like to avoid overfitting. In practice, this requires some
form of regularization, or a penalty on overly complex models.

Recently, a sparse Bayesian learning (SBL) framework has been derived to find robust solu-
tions to (1) [3, 7]. The key feature of this development is the incorporation of a prior on the
weights that encourages sparsity in representation, i.e., few non-zero weights. WhenΦ is
square and formed from a positive-definite kernel function, we obtain the relevance vector
machine (RVM), a Bayesian competitor of SVMs with several significant advantages.

1.1 Sparse Bayesian Learning

Given a new regressor vectorφ∗, the full Bayesian treatment of (1) involves finding the
predictive distributionp(t∗|t).1 We typically compute this distribution by marginalizing

1For simplicity, we omit explicit conditioning onΦ andφ∗, i.e.,p(t∗|t) ≡ p(t∗|t, Φ, φ∗).



over the model weights, i.e.,

p(t∗|t) =
1

p(t)

∫

p(t∗|w)p(w, t)dw, (2)

where the joint densityp(w, t) = p(t|w)p(w) combines all relevant information from the
training data (likelihood principle) with our prior beliefs about the model weights. The
likelihood termp(t|w) is assumed to be Gaussian,

p(t|w) = (2πσ2)−N/2 exp

(

− 1

2σ2
‖t − Φw‖2

)

, (3)

where for now we assume that the noise varianceσ2 is known. For sparse priorsp(w)
(possibly improper), the required integrations, including the computation of the normaliz-
ing termp(t), are typically intractable, and we are forced to accept some form of approxi-
mation top(w, t).

Sparse Bayesian learning addresses this issue by introducing a set of hyperparameters into
the specification of the problematic weight priorp(w) before adopting a particular approx-
imation. The key assumption is thatp(w) can be expressed as

p(w) =
M
∏

i=1

p(wi) =
M
∏

i=1

∫

p(wi|γi)p(γi)dγi, (4)

whereγ = [γ1, . . . , γM ]T represents a vector of hyperparameters, (one for each weight).
The implicit SBL derivation presented in [7] can then be reformulated as follows,

p(t∗|t) =
1

p(t)

∫

p(t∗|w)p(t|w)p(w)dw

=
1

p(t)

∫ ∫

p(t∗|w)p(t|w)p(w|γ)p(γ)dwdγ. (5)

Proceeding further, by applying Bayes’ rule to this expression, we can exploit the plugin
rule [2] via,

p(t∗|t) =

∫ ∫

p(t∗|w)p(t|w)p(w|γ)
p(γ|t)
p(t|γ)

dwdγ

≈
∫ ∫

p(t∗|w)p(t|w)p(w|γ)
δ(γMAP )

p(t|γ)
dwdγ

=
1

p(t;γMAP )

∫

p(t∗|w)p(w, t;γMAP )dw. (6)

The essential difference from (2) is that we have replacedp(w, t) with the approximate
distributionp(w, t;γMAP ) = p(t|w)p(w;γMAP ). Also, the normalizing term becomes
∫

p(w, t;γMAP )dw and we assume that all required integrations can now be handled in
closed form. Of course the question remains, how do we structure this new set of param-
etersγ to accomplish this goal? The answer is that the hyperparameters enter as weight
prior variances of the form,

p(wi|γi) = N (0, γi). (7)
The hyperpriors are given by,

p(γ−1
i ) ∝ γ1−a

i exp(−b/γi), (8)

wherea, b > 0 are constants. The crux of the actual learning procedure presented in [7]
is to find some MAP estimate ofγ (or more accurately, a function ofγ). In practice, we
find that many of the estimatedγi’s converge to zero, leading to sparse solutions since
the corresponding weights, and therefore columns ofΦ, can effectively be pruned from
the model. The Gaussian assumptions, both onp(t|w) andp(w;γ), then facilitate direct,
analytic computation of (6).



1.2 Ambiguities in Current SBL Derivation

Modern Bayesian analysis is primarily concerned with finding distributions and locations of
significant probability mass, not just modes of distributions, which can be very misleading
in many cases [6]. With SBL, the justification for the additional level of sophistication
(i.e., the inclusion of hyperparameters) is that the adoption of the plugin rule (i.e., the
approximationp(w, t) ≈ p(w, t;γMAP )) is reflective of the true mass, at least sufficiently
so for predictive purposes. However, no rigorous motivation for this particular claim is
currently available nor is it immediately obvious exactly how the mass of this approximate
distribution relates to the true mass.

A more subtle difficulty arises because MAP estimation, and hence the plugin rule, is not
invariant under a change in parameterization. Specifically, for an invertible functionf(·),

[f(γ)]MAP 6= f(γMAP ). (9)

Different transformations lead to different modes and ultimately, different approximations
to p(w, t) and thereforep(t∗|t). So how do we decide which one to use? The canonical
form of SBL, and the one that has displayed remarkable success in the literature, does not
in fact find a mode ofp(γ|t), but a mode ofp(− log γ|t). But again, why should this mode
necessarily be more reflective of the desired mass than any other?

As already mentioned, SBL often leads to sparse results in practice, namely, the approxi-
mationp(w, t;γMAP ) is typically nonzero only on a small subspace ofM -dimensionalw
space. The question remains, however, why should an approximation to the full Bayesian
treatment necessarily lead to sparse results in practice?

To address all of these ambiguities, we will herein demonstrate that the sparse Bayesian
learning procedure outlined above can be recast as the application of a rigorous variational
approximation to the distributionp(w, t).2 This will allow us to quantify the exact rela-
tionship between the true mass and the approximate mass of this distribution. In effect, we
will demonstrate that SBL is attempting to directly capture significant portions of the prob-
ability mass ofp(w, t), while still allowing us to perform the required integrations. This
framework also obviates the necessity of assuming any hyperpriorp(γ) and is independent
of the (subjective) parameterization (e.g.,γ or − log γ, etc.). Moreover, this perspective
leads to natural, intuitive explanations of why sparsity is observed in practice and why, in
general, this need not be the case.

2 A Variational Interpretation of Sparse Bayesian Learning

To begin, we review that the ultimate goal of this analysis is to find a well-motivated ap-
proximation to the distribution

p(t∗|t;H) ∝
∫

p(t∗|w)p(w, t;H)dw =

∫

p(t∗|w)p(t|w)p(w;H)dw, (10)

where we have explicitly noted the hypothesis of a model with a sparsity inducing (possibly
improper) weight prior byH. As already mentioned, the integration required by this form is
analytically intractable and we must resort to some form of approximation. To accomplish
this, we appeal to variational methods to find a viable approximation top(w, t;H) [5].
We may then substitute this approximation into (10), leading to tractable integrations and
analytic posterior distributions. To find a class of suitable approximations, we first express
p(w;H) in its dual form by introducing a set of variational parameters. This is similar to a
procedure outlined in [4] in the context of independent component analysis.

2We note that the analysis in this paper is different from [1], which derives an alternative SBL
algorithm based on variational methods.



2.1 Dual Form Representation of p(w;H)

At the heart of this methodology is the ability to represent a convex function in its dual
form. For example, given a convex functionf(y) : < → <, the dual form is given by

f(y) = sup
λ

[λy − f∗(λ)] , (11)

wheref∗(λ) denotes the conjugate function. Geometrically, this can be interpreted as
representingf(x) as the upper envelope or supremum of a set of lines parameterized byλ.
The selection off∗(λ) as the intercept term ensures that each line is tangent tof(y). If we
drop the maximization in (11), we obtain the bound

f(y) ≥ λy − f∗(λ). (12)

Thus, for any givenλ, we have a lower bound onf(y); we may then optimize overλ to
find the optimal or tightest bound in a region of interest.

To apply this theory to the problem at hand, we specify the form for our sparse prior
p(w;H) =

∏M
i=1 p(wi;H). Using (7) and (8), we obtain the prior

p(wi;H) =

∫

p(wi|γi)p(γi)dγi = C

(

b +
w2

i

2

)−(a+1/2)

, (13)

which for a, b > 0 is proportional to a Student-tdensity. The constantC is not chosen to
enforce proper normalization; rather, it is chosen to facilitate the variational analysis below.
Also, this density function can be seen to encourage sparsity since it has heavy tails and a
sharp peak at zero. Clearlyp(wi;H) is not convex inwi; however, if we letyi , w2

i as
suggested in [5] and define

f(yi) , log p(wi;H) = −(a + 1/2) log C
(

b +
yi

2

)

, (14)

we see that we now have a convex function inyi amenable to dual representation. By
computing the conjugate functionf∗(yi), constructing the dual, and then transforming
back top(wi;H), we obtain the representation (see Appendix for details)

p(wi;H) = max
γi≥0

[

(2πγi)
−1/2 exp

(

−w2
i

2γi

)

exp

(

− b

γi

)

γ−a
i

]

. (15)

As a, b → 0, it is readily apparent from (15) that what were straight lines in theyi domain
are now Gaussian functions with varianceγi in the wi domain. Figure 1 illustrates this
connection. When we drop the maximization, we obtain a lower bound onp(wi;H) of the
form

p(wi;H) ≥ p(wi; Ĥ) , (2πγi)
−1/2 exp

(

−w2
i

2γi

)

exp

(

− b

γi

)

γ−a
i , (16)

which serves as our approximate prior top(w;H). From this relationship, we see that
p(wi; Ĥ) does not integrate to one, except in the special case whena, b → 0. We will now
incorporate these results into an algorithm for finding a goodĤ, or more accuratelŷH(γ),
since each candidate hypothesis is characterized by a different set of variational parameters.

2.2 Variational Approximation to p(w, t;H)

So now that we have a variational approximation to the problematic weight prior, we must
return to our original problem of estimatingp(t∗|t;H). Since the integration is intractable
under model hypothesisH, we will instead computep(t∗|t; Ĥ) using p(w, t; Ĥ) =

p(t|w)p(w; Ĥ), with p(w; Ĥ) defined as in (16). How do we choose this approximate
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Figure 1: Variational approximation example in bothyi space andwi space fora, b → 0.
Left: Dual forms inyi space. The solid line represents the plot off(yi) while the dotted
lines represent variational lower bounds in the dual representation for three different values
of λi. Right: Dual forms inwi space. The solid line represents the plot ofp(wi;H) while
the dotted lines represent Gaussian distributions with three different variances.

model? In other words, given that differentĤ are distinguished by a different set of vari-
ational parametersγ, how do we choose the most appropriateγ? Consistent with modern
Bayesian analysis, we concern ourselves not with matching modes of distributions, but
with aligning regions of significant probability mass. In choosingp(w, t; Ĥ), we would
therefore like to match, where possible, significant regions of probability mass in the true
modelp(w, t;H). For a givent, an obvious way to do this is to select̂H by minimizing
the sum of the misaligned mass, i.e.,

Ĥ = arg min
Ĥ

∫

∣

∣

∣
p(w, t;H) − p(w, t; Ĥ)

∣

∣

∣
dw

= arg max
Ĥ

∫

p(t|w)p(w; Ĥ)dw, (17)

where the variational assumptions have allowed us to remove the absolute value (since
the argument must always be positive). Also, we note that (17) is tantamount to selecting
the variational approximation with maximal Bayesian evidence [6]. In other words, we
are selecting thêH, out of a class of variational approximations toH, that most probably
explains the training datat, marginalized over the weights.

From an implementational standpoint, (17) can be reexpressed using (16) as,

γ = arg max
γ

log

∫

p(t|w)

M
∏

i=1

p
(

wi; Ĥ(γi)
)

dw

= arg max
γ

−1

2

[

log |Σt| + tT Σ−1
t t

]

+
M
∑

i=1

(

− b

γi
− a log γi

)

, (18)

whereΣt , σ2I+Φdiag(γ)ΦT . This is the same cost function as in [7] only without terms
resulting from a prior onσ2, which we will address later. Thus, the end result of this anal-
ysis is an evidence maximization procedure equivalent to the one in [7]. The difference is
that, where before we were optimizing over a somewhat arbitrary model parameterization,
now we see that it is actually optimization over the space of variational approximations to
a model with a sparse, regularizing prior. Also, we know from (17) that this procedure is
effectively matching, as much as possible, the mass of the full modelp(w, t; Ĥ).



3 Analysis

While the variational perspective is interesting, two pertinent questions still remain:

1. Why should it be that approximating a sparse priorp(w;H) leads to sparse repre-
sentations in practice?

2. How do we extend these results to handle an unknown, random varianceσ2?

We first treatQuestion (1). In Figure 2 below, we have illustrated a2D example of evidence
maximization within the context of variational approximations to the sparse priorp(w;H).
For now, we will assumea, b → 0, which from (13), implies thatp(wi;H) ∝ 1/|wi| for
eachi. On the left, the shaded area represents the region ofw space where bothp(w;H)
andp(t|w) (and thereforep(w, t;H)) have significant probability mass. Maximization of
(17) involves finding an approximate distributionp(w, t; Ĥ) with a substantial percentage
of its mass in this region.
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Figure 2: Comparison between full model and approximate models witha, b → 0. Left:
Contours of equiprobability density forp(w;H) and constant likelihoodp(t|w); the promi-
nent density and likelihood lie within each region respectively. The shaded region repre-
sents the area where both have significant mass.Right: Here we have added the contours
of p(w; Ĥ) for two different values ofγ, i.e., two approximate hypotheses denotedĤa and
Ĥb. The shaded region represents the area where both the likelihood and theapproximate
prior Ĥa have significant mass. Note that by the variational bound, eachp(w; Ĥ) must lie
within the contours ofp(w;H).

In the plot on the right, we have graphed two approximate priors that satisfy the variational
bounds, i.e., they must lie within the contours ofp(w;H). We see that the narrow prior that
aligns with the horizontal spine ofp(w;H) places the largest percentage of its mass (and
therefore the mass ofp(w, t; Ĥa)) in the shaded region. This corresponds with a prior of

p(w; Ĥa) = p(w1, w2; γ1 À 0, γ2 ≈ 0). (19)

This creates a long narrow prior since there is minimal variance along thew2 axis. In fact,
it can be shown that owing to the infinite density of the variational constraint along each
axis (which is allowed asa andb go to zero), the maximum evidence is obtained when
γ2 is strictly equal to zero, giving the approximate prior infinite density along this axis as
well. This implies thatw2 also equals zero and can be pruned from the model. In contrast,
a model with significant prior variance along both axes,Ĥb, is hampered because it cannot
extend directly out (due to the dotted variational boundary) along the spine to penetrate the
likelihood.



Similar effective weight pruning occurs in higher dimensional problems as evidenced by
simulation studies and the analysis in [3]. In higher dimensions, the algorithm only retains
those weights associated with the prior spines that span a subspace penetrating the most
prominent portion of the likelihood mass (i.e., a higher-dimensional analog to the shaded
region already mentioned). The priorp(w; Ĥ) navigates the variational constraints, placing
as much as possible of its mass in this region, driving many of theγi’s to zero.

In contrast, whena, b > 0, the situation is somewhat different. It is not difficult to show
that, assuming a noise varianceσ2 > 0, the variational approximation top(w, t;H) with
maximal evidence cannot have anyγi = wi = 0. Intuitively, this occurs because the now
finitespines of the priorp(w;H), which bound the variational approximation, do not allow
us to place infinite prior density in any region of weight space (as occurred previously
when anyγi → 0). Consequently, if anyγi goes to zero witha, b > 0, the associated
approximate prior mass, and therefore the approximate evidence, must also fall to zero by
(16). As such,models with all non-zero weights will be now be favored when we form the
variational approximation. We therefore cannot assume an approximation to a sparse prior
will necessarily give us sparse results in practice.

We now addressQuestion (2). Thus far, we have considered a known, fixed noise variance
σ2; however, what ifσ2 is unknown? SBL assumes it is unknown and random with prior
distribution p(1/σ2) ∝ (σ2)1−c exp(−d/σ2), and c, d > 0. After integrating out the
unknownσ2, we arrive at the implicit likelihood equation,

p(t|w) =

∫

p(t|w, σ2)p(σ2)dσ2 ∝
(

d +
1

2
‖t − Φw‖2

)−(c̄+1/2)

, (20)

wherec̄ , c+(N − 1)/2. We may then form a variational approximation to the likelihood
in a similar manner as before (withwi being replaced by‖t − Φw‖) giving us,

p(t|w) ≥ (2π)−N/2(σ2)−1/2 exp

(

− 1

2σ2
‖t − Φw‖2

)

exp

(

− d

σ2

)

(σ2)−c̄

= (2πσ2)−N/2 exp

(

− 1

2σ2
‖t − Φw‖2

)

exp

(

− d

σ2

)

(σ2)−c, (21)

where the second step follows by substituting back in forc̄. By replacingp(t|w) with the
lower bound from (21), we then maximize over the variational parametersγ andσ2 via

γ, σ2 = arg max
γ,σ2

−1

2

[

log |Σt| + tT Σ−1
t t

]

+

M
∑

i=1

(

− b

γi
− a log γi

)

− d

σ2
−c log σ2, (22)

the exact SBL optimization procedure. Thus, we see that the entire SBL framework, in-
cluding noise variance estimation, can be seen in variational terms.

4 Conclusions

The end result of this analysis is an evidence maximization procedure that is equivalent to
the one originally formulated in [7]. The difference is that, where before we were optimiz-
ing over a somewhat arbitrary model parameterization, we now see that SBL is actually
searching a space of variational approximations to find an alternative distribution that cap-
tures the significant mass of the full model. Moreover, from the vantage point afforded
by this new perspective, we can better understand the sparsity properties of SBL and the
relationship between sparse priors and approximations to sparse priors.



Appendix: Derivation of the Dual Form of p(wi;H)

To accommodate the variational analysis of Sec. 2.1, we require the dual representation of
p(wi;H). As an intermediate step, we must find the dual representation off(yi), where
yi , w2

i and
f(yi) , log p(wi;H) = log

[

C
(

b +
yi

2

)−(a+1/2)
]

. (23)

To accomplish this, we find the conjugate functionf∗(λi) using the duality relation

f∗(λi) = max
yi

[λiyi − f(yi)] = max
yi

[

λiyi − log C +

(

a +
1

2

)

log
(

b +
yi

2

)

]

. (24)

To find the maximizingyi, we take the gradient of the left side and set it to zero, giving us,

ymax
i = − a

λi
− 1

2λi
− 2b. (25)

Substituting this value into the expression forf∗(λi) and selecting

C = (2π)−1/2 exp

[

−
(

a +
1

2

)] (

a +
1

2

)(a+1/2)

, (26)

we arrive at

f∗(λi) =

(

a +
1

2

)

log

(−1

2λi

)

+
1

2
log 2π − 2bλi. (27)

We are now ready to representf(yi) in its dual form, observing first that we only need
consider maximization overλi ≤ 0 sincef(yi) is a monotonically decreasing function
(i.e., all tangent lines will have negative slope). Proceeding forward, we have

f(yi) = max
λi≤0

[λiyi − f∗(λi)] = max
γi≥0

[−yi

2γi
−

(

a +
1

2

)

log γi −
1

2
log 2π − b

γi

]

, (28)

where we have used the monotonically increasing transformationλi = −1/(2γi), γi ≥ 0.
The attendant dual representation ofp(wi;H) can then be obtained by exponentiating both
sides of (28) and substitutingyi = w2

i ,

p(wi;H) = max
γi≥0

[

1√
2πγi

exp

(

−w2
i

2γi

)

exp

(

− b

γi

)

γ−a
i

]

. (29)
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