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Abstract

As part of an environmental observation and forecasting system,
sensors deployed in the Columbia RIver Estuary (CORIE) gather
information on physical dynamics and changes in estuary habi-
tat. Of these, salinity sensors are particularly susceptible to bio-
fouling, which gradually degrades sensor response and corrupts crit-
ical data. Automatic fault detectors have the capability to identify
bio-fouling early and minimize data loss. Complicating the devel-
opment of discriminatory classifiers is the scarcity of bio-fouling
onset examples and the variability of the bio-fouling signature. To
solve these problems, we take a novelty detection approach that
incorporates a parameterized bio-fouling model. These detectors
identify the occurrence of bio-fouling, and its onset time as reliably
as human experts. Real-time detectors installed during the sum-
mer of 2001 produced no false alarms, yet detected all episodes of
sensor degradation before the field staff scheduled these sensors for
cleaning. From this initial deployment through February 2003, our
bio-fouling detectors have essentially doubled the amount of useful
data coming from the CORIE sensors.

1 Introduction

Environmental observation and forecasting systems (EOFS) gather, process, and
deliver environmental information to facilitate sustainable development of natu-
ral resources. Our work is part of a pilot EOFS system being developed for the
Columbia River Estuary (CORIE) [1]. This system uses data from sensors de-
ployed throughout the estuary (Figure 1) to calibrate and verify numerical models
of circulation and material transport. CORIE scientists use these models to predict
and evaluate the effects of development on the estuary environment (e.g. [2]).

CORIE salinity sensors deployed in the estuary lose several months of data every
year due to sensor degradation. Corrupted and missing field measurements com-
promise model calibration and verification, which can lead to invalid environmental
forecasts. The most common form of salinity sensor degradation is bio-fouling, a



reduction of the sensor response due to growth of biological material on the sensor.

Prior the deployment of the technology described here, on a yearly basis CORIE
salinity sensors suffered a 68% data loss due to bio-fouling. Although bio-fouling
degradation is a common problem for environmental sensors, there is apparently no
previous work that develops automatic detectors of such degradation.

Figure 1: Map of Columbia River estuary marked with locations of CORIE sensors.

Early bio-fouling detection is made difficult by the normal variability of salinity
measurements. Tides cause the measurements to vary from near river salinity to
near ocean salinity twice a day. The temporal pattern of salinity penetration varies
spatially in the estuary. In addition, upriver sites, such as AM169, show substantial
variability with the 14 and 28 day spring-neap tidal cycle. Changes in weather (e.g.
winds, precipitation) and ocean conditions cause additional variations in salinity.

To complicate bio-fouling detection further, the bio-fouling signature also varies
from episode to episode. The time from onset to complete bio-fouling can take
anywhere from 3 weeks to 5 months depending on the season and type of growth.
We observe two types of bio-fouling in the estuary, hard growth (e.g. barnacles)
characterized by quick linear degradation and soft growth (e.g. plant material)
characterized by slow linear degradation with occasional interruptions in the down-
trend.

Figure 2 illustrates tidal variations in salinity and the effect that bio-fouling has on
these measurements. It contains salinity time series in practical salinity units (psu)
from two sensors mounted at the Red26 station, Figure 1. The upper trace, from
sensor CT1460, contains only clean measurements. The lower trace, from sensor
CT1448, contains both clean and bio-fouled measurements. The first half of the two
time series are similar, but beginning on September 28th, the salinity measurements
diverge. The CT1448 sensor exhibits typical hard-growth bio-fouling degradation.

The primary challenge to our work is to detect the degradation quickly, ideally
within several diurnal cycles. Early detection will limit the use of corrupted data in
on-line applications, and provide a basis to rapidly replace degrading sensors, and
thus drastically reduce data loss.

Although the CORIE data archives contain many months of bio-fouled data, there
are relatively few examples of the onset of degradation for most of the sensors
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Figure 2: Clean and bio-fouled salinity time series examples from Red26 station. The
upper time series is from clean instrument CT1460. The lower time series from instrument
CT1448 shows degradation beginning on September 28, 2001. On removal, CT1448 was
found to be bio-fouled.

deployed in the estuary, and it is this onset that we must detect. The dearth of
onset examples, and the observed variability of the bio-fouling signature spatially,
seasonally, and weekly (according to the spring/neap tidal cycle) prevents use of
classical discriminatory fault detectors. Instead we develop a parameterized novelty
detector to detect bio-fouling. This detector incorporates a parameterized model
of bio-fouling behavior. The parameters in the model of bio-fouled sensor behavior
are fit on-line by maximum-likelihood estimation. A model of the clean sensor
behavior is fit to archival data. These models are used in a sequential likelihood
test to provide detection of bio-fouling, and an estimation of the time at which the
degradation began.

Evaluations show that our detectors identify the onset of bio-fouling as reliably as
human experts, and frequently within fewer tidal cycles of the onset. Our deploy-
ment of sensors throughout the estuary has resulted in an actual reduction of the
error loss from 68% to 35%. However, this figure does not adequately reflect the
efficacy of the detectors. Were it economical to replace sensors immediately upon
detection of degradation, the data loss would have been reduced to 17%.

2 Salinity and Temperature

Our detectors monitor maximum diurnal (md) salinity, defined as the maximum
salinity near one of the two diurnal tidal floods. When the sensor is clean, the md
salinity stays close to some mean value, with occasional dips of several psu caused
by variations in the intrusion of salt water into the estuary. When the sensor bio-
fouls, the md salinity gradually decreases to typically less than half its normal mean
value, as seen in the Figure 2 example.

Detectors that monitor salinity alone can not distinguish between normal decreases



in salinity and early bio-fouling. This results in a high false alarm rate1. Natural
salinity decreases can be recognized by monitoring a correlated source of information
that is not corrupted by bio-fouling.

Salinity and temperature at a station are products of the same mixing process of
ocean and river waters, so we expect these values will be correlated. Assuming
linear mixing of ocean and river waters, measured salinity Sm and temperature Tm

are linear functions of ocean {So, To} and river {Sr, Tr} values

Sm = α(t)So + (1 − α(t))Sr (1)

Tm = α(t)To + (1 − α(t))Tr (2)

where α(t) is the mixing coefficient at time t. River salinity Sr is close to zero.
Consequently, the estimated mixing coefficient

α(t) =
Tr − Tm

Tr − To

(3)

should be well correlated with salinity, Sm ≈ αSo. The river temperature is mea-
sured at far upstream stations (Elliot or Woody). The ocean temperature is esti-
mated from measurements at Sand Island, the outermost sensor station.

3 Bio-fouling Detection

Our early experiments with single-measurement detection suggested that we develop
detectors that accrue information over time - similar to the standard sequential
likelihood methods in classical pattern recognition. The is a natural framework for
detecting degradation that grows with time.

Assume a sequence of measurements (salinity and temperature) yn, n = 1, . . . , N
where N is the current time. We construct probability densities for such sequences
for both clean sensors p(y1, . . . , yN | c), and for biofouled sensors p(y1, . . . , yN | f).
With these distributions, we construct a likelihood ratio test

h = ln
p(y1, . . . , yN | f)

p(y1, . . . , yN | c)

f
>
<
c

λ (4)

where the threshold λ is chosen high enough to provide a specified false alarm rate
(Neyman-Pearson test).

We assume that the probability density for the measurement sequence for fouled
detectors is parameterized by a vector of unknown parameters θ. The model is
constructed such that at θ = 0 the density for the sequence assuming a fouled
detector is equal to the density of the sequence assuming a clean detector

p(y1, . . . , yN | f, θ = 0) = p(y1, . . . , yN | c) (5)

Next, we suppose that a given sequence contains a bio-fouling event that is initiated
at the unknown time τ . Under our density models (below), consecutive measure-
ments in the sequence are independent conditioned on the state of the detector.

1Equivalently, if the alarm threshold is increased to maintain a low false alarm rate,
the rate of proper detections is decreased.



Consequently, the likelihood ratio for the sequence (4) reduces to

h = ln
p(y1, . . . , yN | f, τ, θ)

p(y1, . . . , yN | c)
= ln

p(y1, . . . , yτ−1 | c) p(yτ , . . . , yN | τ, θ, f)

p(y1, . . . , yN | c)

=
N

∑

n=τ

ln
p(yn | τ, θ, f)

p(yn | c)

f
>
<
c

λ (6)

Finally, we fit the fouling model parameters θ and the onset time τ , by maximizing
the log-likelihood ln p(y1, . . . , yN | f, τ, θ) with respect to θ and τ . Since the clean
detector model is independent of τ and θ, this is equivalent to maximizing the
log-likelihood ratio in (6). Hence, we replace the latter with

h = max
τ,θ

N
∑

n=τ

ln
p(yn|τ, θ, f)

p(yn|c)

f
>
<
c

λ (7)

If the sequence is coming from a clean sensor, the fit should give θ ≈ 0 and hence
h ≈ 0 (cf 5), and we will detect no event (assuming λ > 0). This construction is a
variant of the type of signal change detection discussed by Basseville [3].

3.1 Bio-fouling Fault Model

By parameterizing the bio-fouling model, we are able to develop detectors using
only clean example data. In this parameterized novelty detector, the bio-fouled
parameters θ are fit on-line to the data under test. To develop our classifier, we
first define models of the clean and bio-fouled data. We model the true salinity, s,
and temperature-based mixing coefficient, α, as jointly Gaussian,

p(s, α|c) = N (µ,Σ) where µ =

[

µs

µα

]

and Σ =

[

σ2
s σsα

σsα σ2
α

]

. (8)

This provides a regression of the salinity on α. The probability of md salinity mea-
surement conditioned on temperature when the sensor is clean is Gaussian N (η, ρ2),
with conditional mean

E[s|α, c] ≡ η = µs + (σsα/σ2
α) (α − µα) (9)

and conditional variance

var[s|α, c] ≡ ρ2 = σ2
s − σ2

sα/σ2
α (10)

When bio-fouling occurs, the salinity measurement is suppressed relative to the
true value. We model this suppression as a linear downtrend with (unknown) rate
(slope) m that begins at (unknown) time τ . The model of the measured md salinity
value for a fouled detector is

xn = g(n)sn (11)

where the suppression factor, g(n), is

g(n) =

{

1 n < τ
(1 − m(n − τ)) n ≥ τ

(12)

and m is the bio-fouling rate (1/sec). Using this suppression factor g(n) (12), the
probability of the salinity measurement, x, conditioned on temperature is

p(xn|αn,m, τ, f) = N (g(n)ηn, g2(n)ρ2) (13)



Note that since the temperature sensor is not susceptible to bio-fouling, we need
not consider the case of both sensors degrading at the same time.

The discriminant function in (7) depends on the parameters of the clean model (9)
and (10) which are estimated from historical data. It also depends on the slope
parameter θ = m of the fouling model, and the onset time τ which are fit online as
per (7).

Applying our Gaussian models in (8) and 13) to (7) gives us

h = max
τ,m

N
∑

n=τ

ln
1

1 − m(n − τ)
+

(xn − ηn)2

2ρ2
−

(xn − (1 − m(n − τ))ηn)2

2(1 − m(n − τ))2ρ2
(14)

When h is above our chosen threshold, the detector signals a biofouled sensor. The
threshold λ is set to provide a maximum false alarm rate on historical data.

3.2 Model Fitting

We find maximum likelihood estimates for µ and Σ from clean archival time series
data. For yn = [sn, αn]T and N training values, the mean is given by µ = 1

N

∑

n yn

and the covariance matrix by Σ = 1
N

∑

n(yn − µ)(yn − µ)T . All other classifier
parameter values, such as µs or E[s|α], can be extracted or calculated from µ and
Σ.

At each time step N , we determine the maximum likelihood estimate of onset time
τ and bio-fouling rate m from the data under test. We find the maximum likelihood
estimate of bio-fouling rate m, for some onset time τ , by setting the first derivative
of (14) with respect to m equal to zero. This operation yields the relation

m

N
∑

k=τ+1

(k − τ)2

ω2
k

η2
k =

N
∑

k=τ+1

k − τ

ωk

(

(xk − ηk)ηk

ωk

− ρ2 +
(xk − ωkηk)2

ω2
k

)

(15)

where ωk = 1 − m(k − τ) and N is the current time. Note that m appears both at
the beginning of (15) and in the definition of ω, so we do not have a closed form
solution for m. However, the ω values act as weights that increase the importance
of most recent measurements. This weighting accounts for the expected decrease in
measurement variance as bio-fouling progresses. To estimate m we take an iterative
approach. First, initialize m to its minimum mean-squared error value given by

m(0) = −

∑N

k=τ+1(k − τ)(xk − ηk)ηk
∑N

k=τ+1(k − τ)2η2
k

(16)

Second, repeatedly solve (15) for m(i) with ω calculated using the previous value
m(i−1). The estimated rate value stops changing when h reaches a maximum.

If we set the window length N − k to maximize the log likelihood ratio, h, the best
estimate of onset time is τ . To determine the onset time estimate, τ , we search
over over all past time for the value of k that maximizes h (14). For each possible
window length, that is k = 3 . . . N , we determine the maximum likelihood estimate
for m and then calculate the corresponding discriminant h. The estimated onset
time τ is the window length N − k that gives the largest value of h. If this h is
above our threshold, the current measurement is classified as bio-fouled.

4 On-line Bio-fouling Detectors

To see how well our classifiers worked in practice, we implemented versions that op-
erated on real-time salinity and temperature measurements. For all four instances



of sensor degradation (three bio-fouling incidents and one instrument failure that
mimicked bio-fouling) that occurred in the summer 2001 test period, our classifiers
correctly indicated a sensor problem before the field staff was aware of it. In ad-
dition, the real-time classifiers produced no false alarms during the summer test
period. More in-depth discussion of the detector suite is given by Archer et al in
[4].

9/05 9/10 9/15 9/20 9/25 9/30 10/05 10/10
10

15

20

25

30

35

M
ax

 S
al

9/05 9/10 9/15 9/20 9/25 9/30 10/05 10/10
0

5

10

15

20

S
LR

Date

(a) Red26
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(b) Tansy Point

Figure 3: Bio-fouling Indicators Red26 and Tansy Point. Top plots show maximum
diurnal salinity. Dotted lines indicate historical no false alarm (lower) and 10% false
alarm rate (upper). Field staff schedule sensors for cleaning when the maximum salinity
drops “too low”, roughly the no false alarm level. Bottom plots show the sequential
likelihood discriminant for forty days of salinity and temperature measurements. Dotted
lines indicate historical no false alarm (upper) and 10% false alarm rate (lower). The ×

indicates the estimated bio-fouling onset time.

The on-line monitor displays a bio-fouling indicator for the previous forty days of
data. Figure 3 shows the on-line bio-fouling monitor during incidents at the Red26
CT1448 sensor and the Tansy Point CT1462 sensor. Since we had another sensor
mounted at the Red26 site that did not bio-foul, Figure 2, we were able to estimate
the bio-fouling time as September 28th. Our detector discriminant passed the no
false alarm threshold five days after onset and roughly three days before the field
staff decided the instrument needed cleaning. This reduction in time to detection
corresponds to reduced data loss of over 30%. In addition, the onset time estimate
of September 29th was within a day of the true onset time.

The Tansy Point CT1462 sensor began to bio-foul a few days after the Red26
CT1448 sensor. Our detector indicated that the Tansy Point sensor was bio-fouling
on October 9th. Since neighboring sensor Red26 was being replaced on October
11th, the field staff decided to retrieve the Tansy Point sensor as well. On removal,
this sensor was found to be in the early stages of bio-fouling. In this case, indications
from our classifier permitted the sensor to be replaced before the field staff would
normally have scheduled it for retrieval. Experience with our on-line bio-fouling
indicators demonstrates that these methods substantially reduce time from bio-
fouling onset to detection.

In addition to the events described above, we have fairly extensive experience with
the online detectors since their initial deployment in the Spring of 2001. At this
writing we have bio-fouling detectors at all observing stations in the estuary and
experience with events throughout the year. Near the end of October, 2001 we
experienced a false alarm in a sensor near the surface in the lower estuary. In
this case, a steady downward trend in surface salinity, caused by several days of



rain triggered a detector response. Following cessation of the precipitation, the
discriminant function h returned back to sub-threshold levels.

In a recent (February 2003) study of five sensor stations in the estuary we compared
data loss prior to the deployment of bio-fouling detectors, with data loss post-
deployment. The pre-deployment period included approximately four years of data
from 1997 through the summer of 2001. The post-deployment period ran from
spring/summer of 2001 through February 2003.

Neglecting seasonal variation, prior to the deployment of our detectors, 68% of all
the sensor data was corrupted by bio-fouling. Following deployment, the rate of
data loss due to bio-fouling dropped to 35%. This is the actual data loss, and
includes delay in responding to the event detection. Were it economical to replace
the sensors immediately upon detection of bio-fouling, the data loss rate would have
been dropped farther to 17%. Even with the delay in responding to event detection,
the detectors have more than doubled the amount of reliable data collected from the
estuary.

5 Discussion

CORIE salinity sensors lose several months of data every year due to sensor bio-
fouling. Developing discriminatory fault detectors for these sensors is hampered by
the variability of the bio-fouling time-signature, and the dearth of bio-fouling onset
example data for training. To solve this problem, we built parameterized novelty
detectors. Clean sensor models were developed based on archive data, while bio-
fouled sensor models are given a simple parametric form that is fit online. On-line
bio-fouling detectors deployed during the summer of 2001 detected all episodes
of sensor degradation several days before the field staff without generating any
false alarms. Expanded installation of a suite of detectors throughout the estuary
continue to successfully detect bio-fouling with minimal false alarm intrusion. The
detector deployment has effectively doubled the amount of clean data available from
the estuary salinity sensors.
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