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Abstract

In this paper we present a generative latent variable model for
rating-based collaborative filtering called the User Rating Profile
model (URP). The generative process which underlies URP is de-
signed to produce complete user rating profiles, an assignment of
one rating to each item for each user. Our model represents each
user as a mixture of user attitudes, and the mixing proportions are
distributed according to a Dirichlet random variable. The rating for
each item is generated by selecting a user attitude for the item, and
then selecting a rating according to the preference pattern associ-
ated with that attitude. URP is related to several models including
a multinomial mixture model, the aspect model [7], and LDA [1],
but has clear advantages over each.

1 Introduction

In rating-based collaborative filtering, users express their preferences by explicitly
assigning ratings to items that they have accessed, viewed, or purchased. We assume
a set of N users {1, ..., N}, a set of M items {1, ...,M}, and a set of V discrete rating
values {1, ..., V }. In the natural case where each user has at most one rating ru

y

for each item y, the ratings for each user form a vector with one component per
item. Of course, the values of some components are not known. We refer to user
u’s rating vector as their rating profile denoted ru.

Rating prediction is the elementary task performed with rating-based data. Given
a particular item and user, the goal is to predict the user’s true rating for the
item in question. Early work on rating prediction focused on neighborhood-based
methods such as the GroupLens algorithm [9]. Personalized recommendations can
be generated for any user by first predicting ratings for all items the user has not
rated, and recommending items with the highest predicted ratings. The capability
to predict ratings has other interesting applications. Rating predictions can be
incorporated with content-based scores to create a preference augmented search
procedure [4]. Rating prediction also facilitates an active approach to collaborative
filtering using expected value of information. In such a framework the predicted
rating of each item is interpreted as its expected utility to the user [2].



In order to gain the maximum advantage from the expressive power of ratings, a
probabilistic model must enable the calculation of the distribution over ratings, and
thus the calculation of predicted ratings. A handful of such models exist including
the multinomial mixture model shown in figure 3, and the aspect model shown in
figure 1 [7]. As latent variable models, both the aspect model and the multinomial
mixture model have an intuitive appeal. They can be interpreted as decomposing
user preferences profiles into a set of typical preference patterns, and the degree to
which each user participates in each preference pattern. The settings of the latent
variable are casually referred to as user attitudes. The multinomial mixture model
constrains all users to have the same prior distribution over user attitudes, while
the aspect model allows each user to have a different prior distribution over user
attitudes. The added flexibility of the aspect model is quite attractive, but the
interpretation of the distribution over user attitudes as parameters instead of ran-
dom variables induces several problems.1First, the aspect model lacks a principled,
maximum likelihood inference procedure for novel user profiles. Second the number
of parameters in the model grows linearly with the number of users in the data set.

Recent research has seen the proposal of several generative latent variable models
for discrete data, including Latent Dirichlet Allocation [1] shown in figure 2, and
multinomial PCA (a generalization of LDA to priors other than Dirichlet) [3]. LDA
and mPCA were both designed with co-occurrence data in mind (word-document
pairs). They can only be applied to rating data if the data is first processed into
user-item pairs using some type of thresholding operation on the rating values.
These models can then be used to generate recommendations; however, they can
not be used to infer a distribution over ratings of items, or to predict the ratings of
items.

The contribution of this paper is a new generative, latent variable model that views
rating-based data at the level of user rating profiles. The URP model incorporates
proper generative semantics at the user level that are similar to those used in LDA
and mPCA, while the inner workings of the model are designed specifically for rating
profiles. Like the aspect model and the multinomial mixture model, the URP model
can be interpreted in terms of decomposing rating profiles into typical preference
patterns, and the degree to which each user participates in each pattern. In this
paper we describe the URP model, give model fitting and initialization procedures,
and present empirical results for two data sets.

2 The User Rating Profile Model

The graphical representation of the aspect, LDA, multinomial mixture, and URP
models are shown in figures 1 through 4. In all models U is a user index, Y is an item
index, Z is a user attitude, Zy is the user attitude responsible for item y, R is a rating
value, Ry is a rating value for item Y , and βvyz is a multinomial parameter giving
P (Ry = v|Zy = z). In the aspect model θ is a set of multinomial parameters where
θu

z represents P (Z = z|U = u). The number of these parameters obviously grows as
the number of training users is increased. In the mixture of multinomials model θ
is a single distribution over user attitudes where θz represents P (Z = z). This gives
the multinomial mixture model correct, yet simplistic, generative semantics at the
user level. In both LDA and URP θ is not a parameter, but a Dirichlet random
variable with parameter α. A unique θ is sampled for each user where θz gives

1Girolami and Kabán have recently shown that a co-occurrence version of the aspect
model can be interpreted as a MAP/ML estimated LDA model under a uniform Dirichlet
prior [5]. Essentially the same relationship holds between the aspect model for ratings
shown in figure 1, and the URP model.



Figure 1: Aspect Model
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Figure 3: Multinomial Mixture Model
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Figure 4: URP Model

P (Z = z) for that user. This gives URP much more powerful generative semantics
at the user level than the multinomial mixture model. As with LDA, URP could
be generalized to use any continuous distribution on the simplex, but in this case
the Dirichlet leads to efficient prediction equations. Note that the bottom level of
the LDA model consists of an item variable Y , and ratings do not come into LDA
at any point.

The probability of observing a given user rating profile ru under the URP model
is shown in equation 1 where we define δ(ru

y , v) to be equal to 1 if user u assigned
rating v to item y, and 0 otherwise. Note that we assume unspecified ratings are
missing at random. As in LDA, the Dirichlet prior renders the computation of the
posterior distribution p(θ, z|ru, α, β) = P (θ, z, ru|α, β)/P (ru|α, β) intractable.

P (ru|α, β) =

∫

θ

P (θ|α)

M
∏

y=1

V
∏

v=1

(

K
∑

z=1

P (Zy = z|θ)P (Ry = v|Zy = z, β)

)δ(ru

y
,v)

dθ

(1)

3 Parameter Estimation

The procedure we use for parameter estimation is a variational expectation maxi-
mization algorithm based on free energy maximization. As with LDA, other meth-
ods including expectation propagation could be applied. We choose to apply a
fully factored variational q-distribution as shown in equation 2. We define q(θ|γu)
to be a Dirichlet distribution with Dirichlet parameters γu

z , and q(Zy|φ
u
y ) to be a

multinomial distribution with parameters φu
zy.

P (θ, z|α, β, ru) ≈ q(θ, z|γu, φu) = q(θ|γu)
M
∏

y=1

q(Zy = zy|φ
u
y ) (2)



A per-user free energy function F [γu, φu, α, β] provides a variational lower bound
on the log likelihood log p(ru|α, β) of a single user rating profile. The sum of the
per-user free energy functions F [γu, φu, α, β] yields the total free energy function
F [γ, φ, α, β], which is a lower bound on the log likelihood of a complete data set of
user rating profiles. The variational and model parameter updates are obtained by
expanding F [γ, φ, α, β] using the previously described distributions, and maximizing
the result with respect to γu, φu, α and β. The variational parameter updates are
shown in equations 3, and 4. Ψ denotes the first derivative of the log gamma
function, also know as the digamma or psi function.

φu
zy ∝

V
∏

v=1

βvyz
δ(ru

y
,v) exp(Ψ(γu

z ) − Ψ(
∑k

j=1γ
u
j )) (3)

γu
z = αz +

M
∑

y=1

φu
zy (4)

By iterating the the variational updates with fixed α and β for a particular user, we
are guaranteed to reach a local maximum of the per-user free energy F [γu, φu, α, β].
This iteration is a well defined approximate inference procedure for the URP model.

The model multinomial update has a closed form solution as shown in equation 5.
This is not the case for the model Dirichlet α due to coupling of its parameters.
However, Minka has proposed two iterative methods for estimating a Dirichlet distri-
bution from probability vectors that can be used here. We give Minka’s fixed-point
iteration in equations 6 and 7, which yields very similar results compared to the
alternative Newton iteration. Details for both procedures including the inversion of
the digamma function may be found in [8].

βvyz ∝
N
∑

u=1

φu
zyδ(ru

y , v) (5)

Ψ(αz) = Ψ(
K
∑

z=1

αz) + 1/N(
N
∑

u=1

Ψ(γu
z ) − Ψ(

N
∑

u=1

γu
z )) (6)

αz = Ψ−1(Ψ(αz)) (7)

4 Model Fitting and Initialization

We give a variational expectation maximization procedure for model fitting in this
section as well as an initialization method that has proved to be very effective for
the URP model. Lastly, we discuss stopping criteria used for the EM iterations.

4.1 Model Fitting

The variational inference procedure should be run to convergence to insure a maxi-
mum likelihood solution. However, if we are satisfied with simply increasing the free
energy at each step, other fitting procedures are possible. In general, the number
of steps of variational inference can be determined by a user dependant heuristic
function H(u). Buntine uses a single step of variational inference for each user to
fit the mPCA model. At the other end of the spectrum, Blei et al. select a sufficient



number of steps to achieve convergence when fitting the LDA model. Empirically,
we have found that simple linear functions, of the number of ratings in each user
profile provide a good heuristic. The details of the fitting procedure are given below.

E-Step:

1. For all users u

2. For h = 0 to H(u)

3. φu
zy ∝

∏V
v=1 βryz

δ(ru

y
,v) exp(Ψ(γu

z ) − Ψ(
∑k

j=1γ
u
j ))

4. γu
z = αz +

∑M
y=1 φu

zy

M-Step:

1. For each v, y, z set βvyz ∝
∑N

u=1 φu
zyvδ(ru

y , v).

2. While not converged

3. Ψ(αz) = Ψ(
∑K

z=1 αz) + 1/N(
∑N

u=1 Ψ(γu
z ) − Ψ(

∑N
u=1 γu

z ))

4. αz = Ψ−1(Ψ(αz))

4.2 Initialization and Early Stopping

Fitting the URP model can be quite difficult starting from randomly initialized
parameters. The initialization method we have adopted is to partially fit a multi-
nomial mixture model with the same number of user attitudes as the URP model.
Fitting the multinomial mixture model for a small number of EM iterations yields
a set of multinomial distributions encoded by β ′, as well as a single multinomial
distribution over user attitudes encoded by θ′. To initialize the URP model we set
β = β′, α = κθ′ where κ is a positive constant. Letting κ = 1 appears to give good
results in practice.

Normally EM is run until the bound on log likelihood converges, but this tends
to lead to over fitting in some models including the aspect model. To combat
this problem Hofmann suggests using early stopping of the EM iteration [7]. We
implemented early stopping for all models using a separate validation set to allow
for a fair comparison.

5 Prediction

The primary task for any model applied to the rating-based collaborative filtering
problem is to predict ratings for the items a user has not rated, based on the ratings
the user has specified. Assume we have a user u with rating profile ru, and we wish
to predict the user’s rating ru

y for an unrated item y. The distribution over ratings
for the item y can be calculated using the model as follows:

P (Ry = v|ru) =

∫

θ

∑

z

P (Ry = v|Zy = z)P (Zy = z|θ)P (θ|ru)dθ (8)

This quantity may look quite difficult to compute, but by interchanging the sum
and integral, and appealing to our variational approximation q(θ|γu) ≈ P (θ|ru) we
obtain an expression in terms of the model and variational parameters.



p(Ry = v|ru) =

K
∑

z=1

βvyz

γu
z

∑K
j=1 γu

j

(9)

To compute P (Ry = v|ru) according to equation 9 given the model parameters α
and β, it is necessary to apply our variational inference procedure to compute γu.
However, this only needs to be done once for each user in order to predict all un-
known ratings in the user’s profile. Given the distribution P (Ry|r

u), various rules
can be used to compute the predicted rating. One could predict the rating with
maximal probability, predict the expected rating, or predict the median rating. Of
course, each of these prediction rules minimizes a different prediction error mea-
sure. In particular, median prediction minimizes the mean absolute error and is the
prediction rule we use in our experiments.

6 Experimentation

We consider two different experimental procedures that test the predictive ability
of a rating-based collaborative filtering method. The first is a weak generalization
all-but-1 experiment where one of each user’s ratings is held out. The model is then
trained on the remaining observed ratings and tested on the held out ratings. This
experiment is designed to test the ability of a method to generalize to other items
rated by the users it was trained on.

We introduce a second experimental protocol for testing a stronger form of gener-
alization. The model is first trained using all ratings from a set of training users.
Once the model is trained, an all-but-1 experiment is performed using a separate
set of test users. This experiment is designed to test the ability of the model to
generalize to novel user profiles.

Two different base data sets were used in the experiments. The well known Each-
Movie data set, and the recently released million rating MovieLens data set. Both
data sets were filtered to contain users with at least 20 ratings. EachMovie was
filtered to remove movies with less than 2 ratings leaving 1621 movies. The Movie-
Lens data was similarly filtered leaving 3592 movies. The EachMovie training sets
contained 30000 users while the test sets contained 5000 users. The MovieLens
training sets contained 5000 users while the test sets contained 1000 users. The
EachMovie rating scale is from 0 to 5, while the MovieLens rating scale is from 1
to 5.

Both types of experiment were performed for a range of numbers of user attitudes.
For each model and number of user attitudes, each experiment was repeated on
three different random partitions of each base data set into known ratings, held out
ratings, validation ratings, training users and testing users. In the weak generaliza-
tion experiments the aspect, multinomial mixture, and URP models were tested.
In the strong generalization experiments only the multinomial mixture and URP
models were tested since a trained aspect model can not be applied to new user
profiles. Also recall that LDA and mPCA can not be used for rating prediction
so they are not be tested in these experiments. We provide results obtained with
a best-K-neighbors version of the GroupLens method for various values of K as a
baseline method.
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Figure 5: EachMovie weak generalization.
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Figure 6: EachMovie strong generalization.
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Figure 7: MovieLens weak generalization.
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Figure 8: MovieLens strong generalization.

7 Results

Results are reported in figures 5 through 8 in terms of normalized mean absolute
error (NMAE). We define our NMAE to be the standard MAE normalized by the the
expected value of the MAE assuming uniformly distributed rating values and rating
predictions. For the EachMovie dataset E[MAE] is 1.94̄, and for the MovieLens
data set it is 1.6. Note that our definition of NMAE differs from that used by
Goldberg et al. [6]. Goldberg et al. take the normalizer to be the difference
between the minimum and maximum ratings, which means most of the error scale
corresponds to performing much worse than random.

In both the weak and strong generalization experiments using the EachMovie data
set, the URP model performs significantly better than the other methods, and
obtains the lowest prediction error. The results obtained from the MovieLens data
set do not show the same clean trends as the EachMovie data set for the weak
generalization experiment. The smaller size of MovieLens data set seems to cause
URP to over fit for larger values of K, thus increasing its test error. Nevertheless,
the lowest error attained by URP is not significantly different than that obtained
by the aspect model. In the strong generalization experiment the URP model again
out performs the other methods.



8 Conclusions

In this paper we have presented the URP model for rating-based collaborative
filtering. Our model combines the intuitive appeal of the multinomial mixture and
aspect models, with the strong high level generative semantics of LDA and mPCA.
As a result of being specially designed for collaborative filtering, our model also
contains unique rating profile generative semantics not found in LDA or mPCA.
This gives URP the capability to operate directly on ratings data, and to efficiently
predict all missing ratings in a user profile. This means URP can be applied to
recommendation, as well as many other tasks based on rating prediction.

We have empirically demonstrated on two different data sets that the weak general-
ization performance of URP is at least as good as that of the aspect and multinomial
mixture models. For online applications where it is impractical to refit the model
each time a rating is supplied by a user, the result of interest is strong generalization
performance. The aspect model can not be applied in a principled manner in such
a scenario, and we see that URP outperforms the other methods by a significant
margin.
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