We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotoni- cally to the solution of the maximum margin hyperplane. The updates optimize the traditionally proposed objective function for SVMs. They do not involve any heuristics such as choosing a learning rate or deciding which variables to update at each iteration. They can be used to adjust all the quadratic programming variables in parallel with a guarantee of im- provement at each iteration. We analyze the asymptotic convergence of the updates and show that the coefficients of non-support vectors decay geometrically to zero at a rate that depends on their margins. In practice, the updates converge very rapidly to good classifiers.