Binary Coding in Auditory Cortex

Part of Advances in Neural Information Processing Systems 15 (NIPS 2002)

Bibtex Metadata Paper


Michael Deweese, Anthony Zador


Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next.

1 B i n a r y c o d i n g i n a u d i t o r y c o r t e x

We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli.

Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cell-