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Abstract

We present an account of human concept learning-that is, learning of
categories from examples-based on the principle of minimum descrip
tion length (MDL). In support of this theory, we tested a wide range
of two-dimensional concept types, including both regular (simple) and
highly irregular (complex) structures, and found the MDL theory to give
a good account of subjects' performance. This suggests that the intrin
sic complexity of a concept (that is, its description -length) systematically
influences its leamability.

1- The Structure of Categories

A number of different principles have been advanced to explain the manner in which hu
mans learn to categorize objects. It has been variously suggested that the underlying prin
ciple might be the similarity structure of objects [1], the manipulability of decision bound~

aries [2], or Bayesian inference [3][4]. While many of these theories are mathematically
well-grounded and have been successful in explaining a range of experimental findings,
they have commonly only been tested on a narrow collection of concept types similar to
the simple unimodal categories of Figure 1(a-e).

(a) (b) (c) (d) (e)

Figure 1: Categories similar to those previously studied. Lines represent contours of equal
probability. All except (e) are unimodal.
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Moreover, in the scarce research that has ventured to look beyond simple category types,
the goal has largely been to investigate categorization performance for isolated irregular
distributions, rather than to present a survey of performance across a range of interesting
distributions. For example, Nosofsky has previously examined the "criss-cross" category
of Figure 1(d) and a diagonal category similar to Concept 3 of Figure 2, as well as some
other multimodal categories [5J [6J. While these individual category structures are no doubt
theoretically important, they in no way exhaust the range of possible concept structures.
Indeed, if we view n-dimensional Cartesian space as the canvas upon which a category
may be represented, then any set of manifolds in that space may be considered as a poten
tial category [7]. It is therefore natural to ask whether one such category-manifold is in
principle easier or more difficult to learn than another. Since previous investigations have
never considered any reasonably broad range of category structures, they have never been
in a position to answer this question.

In this paper we present a theory for human categorization, based on the MDL princi
ple, that is much better equipped to answer questions about .the intrinsic leamability of
both structurally regular and structurally irregular categories. In support of this theory we
briefly present an experiment testing human subjects' learning of a range of concept types
defined over a continuous two-dimensional feature space, including both highly regular
and highly irregular structures. We find that our MDL-based theory gives a good account
of human learning for these concepts, and that descriptive complexity accurately predicts
the subjective difficulty of the various concept types tested.

2 Previous Investigations of Category Structure

The role of category structure in determining leamability has not been overlooked entirely
in the literature; in fact, the intrinsic structure of binary-featured categories has been in
vestigated quite thoroughly. The classic work by Shepard et al. [8J showed that human
performance in learning such Boolean categories varies greatly depending on the intrinsic
logical structure of the concept. More recently, we have shown that this performance is
well-predicted by the intrinsic Boolean complexity of each concept, given by the length
of the shortest Boolean formula that describes the objects in the category [9]. This re
sult suggests that a principle of simplicity or parsimony, manifested as a minimization of
complexity, might play an important role in human category learning.

The details of Boolean complexity analysis do not generalize easily to the type of contin
uous feature spaces we wish to investigate here. Thus a new approach is required, similar
in general spirit but differing in the mathematics. Our goals are therefore (1) to deploy
a complexity minimization technique such as MDL to quantify the complexity of cate-
gories defined over continuous features, and (2) to investigate the influence of complexity
on human category learning by testing a range ofconcept types differing widely in intrinsic
complexity.

3 Experiment

While the MDL principle that we plan to employ is applicable to concepts of any dimen
sion, for reasons of convenience this experiment is limited to category structures that can
be formed within a two-dimensional feature space. This feature space is discretized into a
4 x 4 grid from which a legitimate category can be specified by the selection ofany four grid
squares. Our motivation for discretizing the feature space is to place a constraint on pos
sible category structure that will facilitate the computation of a complexity measure; this
does not restrict the range ofpossible feature values that can be adopted by stimuli. In prin
ciple, feature values are limited only by machine precision, but as a matter of convenience



we restrict features to adopting one of 1000 possible values in the range [0,1].

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5 Concept 6 Concept 7 Concept 8 Concept 9 Concept 10 Concept 11 Concept 12

Figure 2: Abstract concepts used in experiment.

The particular 12 abstract category structures ("concepts") examined in the experiment are
shown in Figure 2. These concepts were considered to be individually interesting (from
a cross-theoretical perspective) and jointly representative of the broader range of available
concepts. The two categories in each concept are referred to as "positive" and "negative."
The positive category is represented by the dark-shaded regions, and the corresponding
negative category is its complement. Note that in many cases the categories are "discon
nected" or multimodal. Nevertheless, these categories are not in any sense "probabilistic"
or "ill-de:fil1.ed"; a given point in feature space is ahvays either p_ositive or negative.

During the experiment, each stimulus is drawn randomly from the feature space and is
labeled "positive" or "negative" based on the region from which it was drawn. Uniform
sampling is used, so all 12 categories of Figure 2 have the same base rate for positives,
P( ..) 4 1posItIve == 16 == 4'

The experiment itself was clothed as a video game that required subjects to discriminate
between two classes of spaceships, "Ally" and "Enemy," by destroying Enemy ships and
quick-landing Allied ships. Each subject (14 total) played 12 five-minute games in which
the distribution ofAllies and Enemies corresponded (in random order) to the 12 concepts of
Figure 2. The physical features of the spaceships in all cases were the height of the "tube"
and the radius of the "pod." As shown in Figure 3, these physical features are mapped
randomly onto the abstract feature space such that the experimental concepts may be any
rigid rotation or reflection of the abstract concepts in Figure 2.

4 Derivation of the MDL Principle

The MDL principle is largely due to Rissanen [10] and is easily shown to be a consequence
of optimal Bayesian inference [11]. While several Bayesian algorithms have previously
been proposed as models of human concept learning [3][4], the implications of the MDL
principle for human learning have only recently come under scrutiny [12][13]. We briefly
review the relevant theory.

According to Bayes rule, a learner ought to select the category hypothesis H that maximizes

(a) (b) (c)

Pod Radius

(d)

Figure 3: (a) A spaceship. (b-d) Three possible instantiations of Concept 6 from Figure 2.



the posterior P(H I D), where D is the data, and

P(H I D) = P(D I H)P(H)
P(D)

Taking negative logarithms ofboth sides, we obtain

-log P(H ID) == -log-P(D I H) - log P(H) + log P(D)

(1)

(2)

The problem of maximizing P(H I D) is thus identical to the problem of minimizing
- log P (H I D). Since log P (D) is constant for all hypotheses, its value does not enter
into the minimization problem, and we can state that the hypothesis of choice ought to be
such as to minimize the quantity

-log P(D I H) - log P(H) (3)

If we follow Rissanen and regard the quantity -log P(x) as the description length of x,
DL (x ), then Equation 3 instructs us to select the hypothesis that minimizes the total de
scription length

DL(D I H) + DL(H) (4)

What this means is that the hypothesis that is optimal from the standpoint of the Bayesian
decision maker is the same hypothesis that yields the most compact two-part code in Equa
tion 4. Thus, besides the merits ofbrevity for its own sake, we see that maximal descriptive
compactness also corresponds to maximal inferential power. It is this equivalence between
description length and inference that leads us to investigate the role ofdescriptive complex
ity in the domain of concept learning.

5 Theory

In order to investigate the complexity of the 12 concepts of Figure 2, Equation 4 indicates
that we need to analyze (1) the description length ofa hypothesis for each concept, DL(H),
and (2) the description length ofthe concept given the hypothesis, DL(D I H). We discuss
these in sequence.

5.1 The Hypothesis Description Length, DL(H)

In order to compute DL(H), we first fix a language! within which hypotheses about the
category structure can be expressed. We choose to use the "rectangle language" whose
alphabet (Table 1) consists of 10 classes of symbols representing the 10 different sizes of
rectangle that can be composited within a 4x4 grid: 1x 1, 1x2, 1x3, 1x4, 2x2, 2x3,
2x4, 3x3, 3x4, and 4x4.2 Each member of the class "m x n" is an m x n or n·x m
rectangle situated at a particular position in the 4 x 4 grid. We allow a given hypothesis to
be represented by up to four distinct rectangles (i.e., four symbols).

Having specified a language, the issue is now the length ofthe hypothesis code. The deriva
tion above suggests that a codelength of -log P(x) be assigned to each symbol x, which
corresponds to the so-called Shannon code. We therefore proceed to compute the Shannon
codelengths for the rectangle alphabet of Table 1.3

1Equivalently, a model class. The particular choice of language (model class) is obviously an im
portant determinant of the ultimate hypothesis description length. We mentionthat the MDL analysis
in this paper might be replaced by another theoretical approach, such as a Bayesian framework,
although we have not pursued this possibility. We adopt the MDL formulation partly because its
emphasis on representation (i.e., description) seems apt for a study of complexity.

2The class "m x n" contains all rectangles of dimension m x nand n x m.
3We use the noninteger value - log P (x) rather than the integer r- log P (x)l. Logs are base-2.

- ~- ·-1



Table 1: Rectangle alphabet. The third and fourth columns show the probability that the
source generates a given member ofthe class "m x n" and the corresponding codelength.

Rectangle Class Possible Locations Probability Codelength
lxl 16 1 1 -log (1~0)10 . 16

lx2 24 1 1 -log (2~0)10 . 24

lx3 16 1 1
-log (1~0)10 . 16

lx4 8 1 1 -log (8~)10 . "8

2x2 9 1 1 -log (gI0 )10 ·9

2x3 12 1 1 -log (1~0)10 . 12

2x4 6 1 1 -log (lo)10 . "6

3x3 4 1 1 -log (4
1
0)10 ·4

3x4 4 1 1 -log (4~)10 ·4
4x4 1 .l. . 1 -log (1~)10

Computing these codelengths requires t~at we specify the probability mass function of a
source, P(x). It is convenient for this purpose (and compatible with the subject's perspec
tive) to imagine that the concepts in Figure 2 are produced by a "concept generator," an
information source whose parameters are essentially unknown. A reasonable assumption
is that the source randomly selects a rectangle class with uniform probability, and then se
lects an individual member of the chosen class also with uniform probability. Since there
are 10 classes, the assumption regarding class selection places a prior on each rectangle
class of P(m x n) == 1~.

Moreover, the assumption of uniform within-class sampling means that in order to encode
any individual rectangle, we need only consider the cardinality of the class to which it
belongs. We now recall that the individual rectangles of the class "m x n" differ only in
their positions within the 4 x 4 grid. Therefore, the cardinality of the class "m x n" is equal
to the number ofunique ways N m x n in which an m x n or n x m rectangle can be selected
from a 4 x 4 grid, where

N - { (5-m)(5-n), m==n
mXn - 2(5 - m)(5 - n), m =I n (5)

Thus, the probability associated with an individual rectangle of class "m x n" is PN(m xn) .
rnXn

The corresponding Shannon codelengths are shown next to these probabilities in Table 1.
The description length of a particular hypothesis is the summed codeword lengths for all
the rectangles (up to four) that are comprised by the hypothesis.

5.2 The Likelihood Description Length, DL(D I H)

The second part of the two-part MDL code is the description of the concept with respect to
the selected hypothesis, corresponding to the Bayes likelihood. There are several possible
approaches to computing DL(D I H); we discuss one that is particularly straightforward.

We recall that a hypothesis H is composed of up to four rectangular regions. Computing
DL(D I H) therefore involves describing that portion of the positive category that falls
within each rectangular hypothesis region. This is conceptually the same problem that we
faced in computing DL(H) above, except that the region of interest for DL(H) was fixed



Table 2: Minimum description lengths for the 12 abstract concepts.

Concept MDL Codelength

8.0768 bits

2 8.3219 bits

3 27.3236 bits

4 17.8138 bits

5 16.5216 bits

6 14.4919 bits

7 17.1357 bits

8 22.5687 bits

9 14.4919 bits

10 15.0768 bits

11 27.1946 bits

12 28.1536 bits

MDL Concept

lIE.•..·;..'.
~

at 4x4, while the regions for DL(D I H) can be of any dimension 4x4 and smaller.
Guided by this analogy, we follow the procedure of the previous section to compute an
appropriate probability mass function. Since DL(D I H) must capture just the positive
squares in the hypothesis region (a maximum of four squares), the only rectangle classes
needed in the alphabet are those of size four: 1x 1, 1x2, 1x 3, 1x4, and 2x2.

6 Minimum Description Lengths for Experimental Concepts

Applying the MDL analysis above to the concepts in Figure 2 requires that we compute
the total description length DL(D I H) + DL(H) corresponding to all viable hypothe-

, ses for each concept. The hypothesis H corresponding to the shortest total codelength
DL(D I H) +DL(H) for each concept is the MDL hypothesis.4 The MDL hypotheses for
all 12 concepts are shown in Table 2 along with the corresponding minimum codelengths.
It can be observed that while for some concepts the MDL hypothesis precisely conforms
to the true positive category (meaning that almost all of the concept information is carried
in the hypothesis code), for the majority of concepts the MDL hypothesis is broader than
the true category region (meaning that the concept information is distributed between the
hypothesis and likelihood codes).

4Note that the MDL hypothesis is not in general the most compact hypothesis, i.e., the hypoth
esis for which DL(H) is a minimum. Rather, the MDL hypothesis is the one for which the sum
DL(D I H) + DL(H) is minimum.



7 Results

For each game played by the subject (i.e., each concept in Figure 2), an overall measure
of performance (d') is computed.5 Figure 4 shows performance for all subjects and all
concepts as a function of the concept complexities (MDL codelengths) in Table 2. There is
an evident decrease in performance with increasing complexity, which a regression analysis
shows to be highly significant (R2 == .384, F(1,166) == 103.375, p < .000001), meaning
that the linear trend in the plot is very unlikely to be a statistical accident. Thus, the MDL
complexity predicts the subjective difficulty ofleaming across a broad range of concepts.
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Figure 4: Performance vs. complexity for all 14 subjects. The d' performance for each
concept is indicated by a '+' and the mean d' for each concept is indicated by an '0'.

We mention that the MDL approach described here can be further modified to make "real
time" predictions ofhow subjects will categorize each new stimulus. In the most simplistic
approach, the prediction for each new stimulus x is made based on the MDL hypothesis
prevailing at the time that stimulus is observed. Correlation between this MDL prediction
and the subject's actual decision is found to be highly significant (p :::; .002) for each of the
12 concept types. The Pearson r statistics are given below:

Concept #:
Pearson r:

123
.46 .47 .19

456
.18 .20 .51

7 8 9 10 11 12
.18 .14 .34 .32 .32 .05

Figure 5 illustrates the behavior of the real-time MDL algorithm. Simulations for a variety
of data sets can be found at http://ruccs . rutgers. edu/ -dfass/mdlmovies. html.

~
.:++:

.:j.::
step 7 step 9 Step 19 step 59 step 113 Step 169 step 190

Figure 5: Real-time MDL hypothesis evolution for actual Concept 11 data. As the size
of the data set grows beyond 150, there is oscillation between the one-rectangle (2x4)
hypothesis. shown in Step 169 and the two-rectangle (1 x3) hypothesis shown in Step 190.

5dl (discriminability) gives a measure of subjects' intrinsic capacity to discriminate categories,
i.e., one that is independent of their criterion for responding "positive" [14].



8 Conclusions

As discussed above, MDL bears a tight relationship with Bayesian inference, and hence
serves as a reasonable basis for a theory of learning. The data presented above suggest
that human learners are indeed guided by something very much like Rissanen's principle
when classifying objects. While it is premature to conclude that humans construct any
thing precisely corresponding to the two-part code of Equation 4, it seems likely that they
employ some closely related complexity-minimization principle-and an associated "cog
nitive code" still to be discovered. This finding is consistent with many earlier observations
ofminimum principles guiding human inference, especially in perception (e.g., the Gestalt
principle ofPragnanz). Moreover, our findings suggest a principled approach to predicting
the subjective difficulty of concepts defined over continuous features. As we had previ
ously found with Boolean concepts, subjective difficulty correlates with intrinsic complex
ity: That which is incompressible is) in turn) incomprehensible. The MDL approach is an
elegant framework in which to make this observation rigorous and concrete, and one which
apparently accords well with human performance.
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