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Abstract

We consider a statistical framework for learning in a class of net-
works of spiking neurons. Our aim is to show how optimal local
learning rules can be readily derived once the neural dynamics and
desired functionality of the neural assembly have been specified,
in contrast to other models which assume (sub-optimal) learning
rules. Within this framework we derive local rules for learning tem-
poral sequences in a model of spiking neurons and demonstrate its
superior performance to correlation (Hebbian) based approaches.
We further show how to include mechanisms such as synaptic de-
pression and outline how the framework is readily extensible to
learning in networks of highly complex spiking neurons. A stochas-
tic quantal vesicle release mechanism is considered and implications
on the complexity of learning discussed.

1 Introduction

Models of individual neurons range from simple rate based approaches to spik-
ing models and further detailed descriptions of protein dynamics within the
cell[9, 10, 13, 6, 12]. As the experimental search for the neural correlates of mem-
ory increasingly consider multi-cell observations, theoretical models of distributed
memory become more relevant[12]. Despite increasing complexity of neural de-
scription, many theoretical models of learning are based on correlation Hebbian
assumptions – that is, changes in synaptic efficacy are related to correlations of pre-
and post-synaptic firing[9, 10, 14]. Whilst such learning rules have some theoretical
justification in toy neural models, they are not necessarily optimal in more com-
plex cases in which the dynamics of the cell contains historical information, such
as modelled by synaptic facilitation and depression, for example[1]. It is our belief
that appropriate synaptic learning rules should appear as a natural consequence
of the neurodynamical system and some desired functionality – such as storage of
temporal sequences.

It seems clear that, as the brain operates dynamically through time, relevant cog-
nitive processes are plausibly represented in vivo as temporal sequences of spikes in
restricted neural assemblies. This paradigm has heralded a new research front in dy-
namic systems of spiking neurons[10]. However, to date, many learning algorithms
assume Hebbian learning, and assess its performance in a given model[8, 6, 14].
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Figure 1: (a) A first order Dynamic Bayesian Network with deterministic hidden
states (represented by diamonds). (b) The basic simplification for neural firing.

Recent work[13] has taken into account some of the complexities in the synaptic dy-
namics, including facilitation and depression, and derived appropriate learning rules.
However, these are rate based models, and do not capture the detailed stochastic
firing effects of individual neurons. Other recent work [4] has used experimental ob-
servations to modify Hebbian learning rules to make heuristic rules consistent with
empirical observations[11]. However, as more and more detail of cellular processes
are experimentally discovered, it would be satisfying to see learning mechanisms as
naturally derivable consequences of the underlying cellular constraints. This paper
is a modest step in this direction, in which we outline a framework for learning
in spiking systems which can handle highly complex cellular processes. The major
simplifying assumption is that internal cellular processes are deterministic, whilst
communication between cells can be stochastic. The central aim of this paper is
to show that optimal learning algorithms are derivable consequences of statistical
learning criteria. Quantitative agreement with empirical data would require further
realistic constraints on the model parameters but is not a principled hindrance to
our framework.

2 A Framework for Learning

A neural assembly of V neurons is represented by a vector v(t) whose components
vi(t), i = 1, . . . , V represent the state of neuron i at time t. Throughout we assume
that vi(t) ∈ {0, 1}, for which vi(t) = 1 means that neuron i spikes at time t, and
vi(t) = 0 denotes no spike. The shape of an action potential is assumed therefore
not to carry any information. This constraint of a binary state firing representation
could be readily relaxed without great inconvenience to multiple or even continuous
states.

Our stated goal is to derive optimal learning rules for an assumed desired func-
tionality and a given neural dynamics. To make this more concrete, we as-
sume that the task is sequence learning (although generalistions to other forms
of learning, including input-output type dynamics are readily achievable[2]). We
make the important assumption that the neural assembly has a sequence of states
V = {v(1),v(2), . . . ,v(t = T )} that it wishes to store (although how such internal



representations are known is in itself a fundamental issue that needs to be ulti-
mately addressed). In addition to the neural firing states, V, we assume that there
are hidden/latent variables which influence the dynamics of the assembly, but which
cannot be directly observed. These might include protein levels within a cell, for
example. These variables may also represent environmental conditions external to
the cell and common to groups of cells. We represent a sequence of hidden variables
by H = {h(1),h(2), . . . ,h(T )}.

The general form of our model is depicted in fig(1)[a] and comprises two components

1. Neural Conditional Independence :

p(v(t+ 1)|v(t),h(t)) =

V
∏

i=1

p(vi(t+ 1)|v(t),h(t),θv) (1)

This distribution specifies that all the information determining the proba-
bility that neuron i fires at time t + 1 is contained in the immediate past
firing of the neural assembly at time v(t) and the hidden states h(t). The
distribution is parameterised by θv, which can be learned from a training
sequence (see below). Here time simply discretises the dynamics. In prin-
ciple, a unit of time in our model may represent a fraction of millisecond.

2. Deterministic Hidden Variable Updating :

h(t+ 1) = f (v(t+ 1),v(t),h(t),θh) (2)

This equation specifies that the next hidden state of the assembly h(t+ 1)
depends on a vector function f of the states v(t+1),v(t),h(t). The function
f is parameterised by θh which is to be learned.

This model is a special case of Dynamic Bayesian networks, in which the hidden
variables are deterministic functions of their parental states and is treated in more
generality in [2]. The model assumptions are depicted in fig(1)[b] in which poten-
tially complex deterministic interactions within a neuron can be considered, with
lossy transmission of this information between neurons in the form of stochastic fir-
ing. Whilst the restriction to deterministic hidden dynamics appears severe, it has
the critical advantage that learning in such models can be achieved by deterministic
forward propagation through time. This is not the case in more general Dynamic
Bayesian networks where an integral part of the learning procedure involves, in prin-
cipal, both forward and backward temporal passes (non-causal learning), and also
imposes severe restrictions on the complexity of the hidden unit dynamics due to
computational difficulties[7, 2]. A central ingredient of our approach is that it deals
with individual spike events, and not just spiking-rates as used in other studies[13].

The key mechanism for learning in statistical models is maximising the log-likelihood
L(θv,θh|V) of a sequence V,

L(θv,θh|V) = log p(v(1)|θv) +

T−1
∑

t=1

log p(v(t+ 1)|v(t),h(t),θv) (3)

where the hidden unit values are calculated recursively using (2). Training
multiple sequences Vµ, µ = 1, . . . P is straightforward using the log-likelihood
∑

µ L(θv,θh|V
µ). To maximise the log-likelihood, it is useful to evaluate the deriva-

tives with respect to the model parameters. These can be calculated as follows :

dL

dθv

=
∂p(v(1)|θv)

∂θv

+

T−1
∑

t=1

∂

∂θv

log p(v(t+ 1)|v(t),h(t),θv) (4)



dL

dθh

=

T−1
∑

t=1

∂

∂h(t)
log p(v(t+ 1)|v(t),h(t),θv)

dh(t)

dθh

(5)

dh(t)

dθh

=
∂f(t)

∂θh

+
∂f(t)

∂h(t− 1)

dh(t− 1)

dθh

(6)

where f(t) ≡ f(v(t),v(t− 1),h(t− 1),θh). Hence :

1. Learning can be carried out by forward propagation through time. In a bi-
ological system it is natural to use gradient ascent training θ ← θ+ηdL/dθ
where the learning rate η is chosen small enough to ensure convergence to
a local optimum of the likelihood. This batch training procedure is readily
convertible to an online form if needed.

2. Highly complex functions f and tables p(v(t+ 1)|v(t),h(t)) may be used.

In the remaining sections, we apply this framework to some simple models and show
how optimal learning rules can be derived for old and new theoretical models.

2.1 Stochastically Spiking Neurons

We assume that neuron i fires depending on the membrane potential ai(t) through
p(vi(t+ 1) = 1|v(t),h(t)) = p(vi(t+ 1) = 1|ai(t)). (More complex dependencies on
environmental variables are also clearly possible). To be specific, we take throughout
p(vi(t+ 1) = 1|ai(t)) = σ (ai(t)), where σ(x) = 1/(1 + e−x). The probability of the
quiescent state is 1 minus this probability, and we can conveniently write

p(vi(t+ 1)|ai(t)) = σ ((2vi(t+ 1)− 1)ai(t)) (7)

which follows from 1 − σ(x) = σ(−x). The choice of the sigmoid function σ(x)
is not fundamental and is simply analytically convenient. The log-likelihood of a
sequence of visible states V is

L =

T−1
∑

t=1

V
∑

i=1

log σ ((2vi(t+ 1)− 1)ai(t)) (8)

and the (online) gradient of the log-likelihood is then

dL(t+ 1)

dwij
= (vi(t+ 1)− σ(ai(t)))

dai(t)

dwij
(9)

where we used the fact that vi ∈ {0, 1}. The batch gradient is simply given by
summing the above online gradient over time. Here wij are parameters of the
membrane potential (see below). We take (9) as common to the remainder in which
we model the membrane potential ai(t) with increasing complexity.

2.2 A simple model of the membrane potential

Perhaps the simplest membrane potential model is the Hopfield potential

ai(t) ≡
V
∑

j=1

wijvj(t)− bi (10)

where wij characterizes the synaptic efficacy from neuron j (pre-synaptic) to neuron
i (post-synaptic), and bi is a threshold. The model is depicted in fig(2)[a]. Applying
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Figure 2: (a) The graph for a simple Hopfield membrane potential shown only for a
single membrane potential. The potential is a deterministic function of the network
state and (the collection of) membrane potentials influences the next state of the
network. (b) Dynamic synapses correspond to hidden variables which influence the
membrane potential and update themselves, depending on the firing of the network.
Only one membrane potential and one synaptic factor is shown.

our framework to this model to learn a temporal sequence V by adjustment of the
parameters wij (the bi are fixed for simplicity), we obtain the (batch) learning rule

wnew
ij = wij + η

dL

dwij
,

dL

dwij
=

T−1
∑

t=1

(vi(t+ 1)− σ(ai(t))) vj(t), (11)

where the learning rate η is chosen empirically to be sufficiently small to ensure
convergence. Note that in the above rule vi(t + 1) refers to the desired known
training pattern, and σ(ai(t)) can be interpreted as the average instantaneous firing
rate of neuron i at time t + 1 when its inputs are clamped to the known desired
values of the network at time t. This is a form of Delta Rule (or Rescorla-Wagner)
learning[12]. The above learning rule can be seen as a modification of the standard

Hebb learning rule wij =
∑T−1

t=1 vi(t + 1)vj(t). However, the rule (11) can store a
sequence of V linearly independent patterns, much greater than the 0.26V capacity
of the Hebb rule[5]. Biologically, the rule (11) could be implemented by measuring
the difference between the desired training state vi(t + 1) of neuron i, and the
instantaneous firing rate of neuron i when all other neurons, j 6= i are clamped
in training states vj(t). Simulations with this model and comparison with other
training approaches are given in [3].

3 Dynamic Synapses

In more realistic synaptic models, neurotransmitter generation depends on a finite
rate of cell subcomponent production, and the quantity of vesicles released is af-
fected by the history of firing[1]. The depression mechanism affects the impact of
spiking on the membrane potential response by moderating terms in the membrane
potential ai(t) of the form

∑

j wijvj(t) to
∑

j wijxj(t)vj(t), for depression factors

xj(t) ∈ [0, 1]. A simple dynamics for these depression factors is[15, 14]

xj(t+ 1) = xj(t) + δt

(

1− xj(t)

τ
− Uxj(t)vj(t)

)

(12)
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Figure 3: Learning with depression : U = 0.5, τ = 5, δt = 1, η = 0.25.

where δt, τ , and U represent time scales, recovery times and spiking effect param-
eters respectively. Note that these depression factor dynamics are exactly of the
form of hidden variables that are not observed, consistent with our framework in
section (2), see fig(2)[b]. Whilst some previous models have considered learning
rules for dynamic synapses using spiking-rate models [13, 15] we consider learning
in a stochastic spiking model. Also, in contrast to a previous study which assumes
that the synaptic dynamics modulates baseline Hebbian weights[14], we show below
that it is straightforward to include dynamic synapses in a principled way using our
learning framework. Since the depression dynamics in this model do not explicitly
depend on wij , the gradients are simple to calculate. Note that synaptic facilitation
is also straightforward to include in principle[15].

For the Hopfield potential, the learning dynamics is simply given by equations

(9,12), with dai(t)
dwij

= xj(t)vj(t). In fig(3) we demonstrate learning a random tem-

poral sequence of 20 time steps for an assembly of 50 neurons. After learning wij

with our rule, we initialised the trained network in the first state of the training
sequence. The remaining states of the sequence were then correctly recalled by
iteration of the learned model. The corresponding generated factors xi(t) are also
plotted. For comparison, we plot the results of using the dynamics having set the wij

using a temporal Hebb rule. The poor performance of the correlation based Hebb
rule demonstrates the necessity, in general, to couple a dynamical system with an
appropriate learning mechanism which, in this case at least, is readily available.

4 Leaky Integrate and Fire models

Leaky integrate and fire models move a step towards biological realism in which the
membrane potential increments if it receives an excitatory stimulus (wij > 0), and
decrements if it receives an inhibitory stimulus (wij < 0). A model that incorporates
such effects is

ai(t) =



αai(t− 1) +
∑

j

wijvj(t) + θrest (1− α)



 (1− vi(t− 1)) + vi(t− 1)θ
fired

(13)
Since vi ∈ {0, 1}, if neuron i fires at time t − 1 the potential is reset to θfired at
time t. Similarly, with no synaptic input, the potential equilibrates to θrest with
time constant −1/ logα. Here α ∈ [0, 1] represents membrane leakage characteristic
of this class of models.
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Figure 4: Stochastic vesicle release (synaptic dynamic factors not indicated).

Despite the apparent increase in complexity of the membrane potential over the
simple Hopfield case, deriving appropriate learning dynamics for this new system
is straightforward since, as before, the hidden variables (here the membrane poten-
tials) update in a deterministic fashion. The membrane derivatives are

dai(t)

dwij
= (1− vi(t− 1))

(

α
dai(t− 1)

dwij
+ vj(t)

)

(14)

By initialising the derivative dai(t=1)
dwij

= 0, equations (9,13,14) define a first order

recursion for the gradient which can be used to adapt wij in the usual manner
wij ← wij + ηdL/dwij . We could also apply synaptic dynamics to this case by
replacing the term vj(t) in (14) by xj(t)vj(t).

A direct consequence of the above learning rule (explored in detail elsewhere) is a
spike time dependent learning window in qualitative agreement with experimental
results[11], a pleasing corollary of our approach, and is consistent with our belief
that such observed plasticity has at its core a simple learning rule.

5 A Stochastic Vesicle Release Model

Neurotransmitter release can be highly stochastic and it would be desirable to in-
clude this mechanism in our models. A simple model of quantal release of trans-
mitter from pre-synaptic neuron j to post-synaptic neuron i is to release a vesicle
with probability

p(rij(t) = 1|xij(t), vj(t)) = xij(t)vj(t)Rij (15)

where, in analogy with (12),

xij(t+ 1) = xij(t) + δt

(

1− xij(t)

τ
− Uxij(t)rij(t)

)

(16)

and Rij ∈ [0, 1] is a plastic release parameter. The membrane potential is then
governed in integrate and fire models by

ai(t) =



αai(t− 1) +
∑

j

wijrij(t) + θrest (1− α)



 (1− vi(t− 1))+ vi(t− 1)θ
fired

(17)
This model is schematically depicted in fig(4). Since the unobserved stochastic
release variables rij(t) are hidden, this model does not have fully deterministic
hidden dynamics. In general, learning in such models is more complex and would
require both forward and backward temporal propagations including, undoubtably,
graphical model approximation techniques[7].



6 Discussion

Leaving aside the issue of stochastic vesicle release, a further step in the evolu-
tion of membrane complexity is to use Hodgkin-Huxley type dynamics[9]. Whilst
this might appear complex, in principle, this is straightforward since the membrane
dynamics can be represented by deterministic hidden dynamics. Explicitly sum-
ming out the hidden variables would then give a representation of Hodgkin-Huxley
dynamics analogous to that of the Spike Response Model (see Gerstner in [10]).

Deriving optimal learning in assemblies of stochastic spiking neurons can be
achieved using maximum likelihood. This is straightforward in cases for which
the latent dynamics is deterministic. It is worth emphasising, therefore, that al-
most arbitrarily complex spatio-temporal patterns may potentially be learned –
and generated under cued retrieval – for very complex neural dynamics. Whilst
this framework cannot deal with arbitrarily complex stochastic interactions, it can
deal with learning in a class of interesting neural models, and concepts from graph-
ical models can be useful in this area. A more general stochastic framework would
need to examine approximate causal learning rules which, despite not being fully
optimal, may perform well. Finally, our assumption that the brain operates opti-
mally (albeit within severe constraints) enables us to drop other assumptions about
unobserved processes, and leads to models with potentially more predictive power.
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