
Learning in Zero-Sum Team Markov Games
Using Factored Value Functions

Michail G. Lagoudakis
Department of Computer Science

Duke University
Durham, NC 27708
mgl@cs.duke.edu

Ronald Parr
Department of Computer Science

Duke University
Durham, NC 27708
parr@cs.duke.edu

Abstract

We present a new method for learning good strategies in zero-sum
Markov games in which each side is composed of multiple agents col-
laborating against an opposing team of agents. Our method requires full
observability and communication during learning, but the learned poli-
cies can be executed in a distributed manner. The value function is rep-
resented as a factored linear architecture and its structure determines the
necessary computational resources and communication bandwidth. This
approach permits a tradeoff between simple representations with little or
no communication between agents and complex, computationally inten-
sive representations with extensive coordination between agents. Thus,
we provide a principled means of using approximation to combat the
exponential blowup in the joint action space of the participants. The ap-
proach is demonstrated with an example that shows the efficiency gains
over naive enumeration.

1 Introduction

The Markov game framework has received increased attention as a rigorous model for
defining and determining optimal behavior in multiagent systems. The zero-sum case, in
which one side’s gains come at the expense of the other’s, is the simplest and best un-
derstood case1. Littman [7] demonstrated that reinforcement learning could be applied to
Markov games, albeit at the expense of solving one linear program for each state visited
during learning. This computational (and conceptual) burden is probably one factor behind
the relative dearth of ambitious Markov game applications using reinforcement learning.

In recent work [6], we demonstrated that many previous theoretical results justifying the
use of value function approximation to tackle large MDPs could be generalized to Markov
games. We applied the LSPI reinforcement learning algorithm [5] with function approxi-
mation to a two-player soccer game and a router/server flow control problem and derived
very good results. While the theoretical results [6] are general and apply to any reinforce-
ment learning algorithm, we preferred to use LSPI because LSPI’s efficient use of data
meant that we solved fewer linear programs during learning.

1The term Markov game in this paper refers to the zero-sum case unless stated otherwise.

Since soccer, routing, and many other natural applications of the Markov game framework
tend to involve multiple participants it would be very useful to generalize recent advances
in multiagent cooperative MDPs [2, 4] to Markov games. These methods use a factored
value function architecture and determine the optimal action using a cost network [1] and a
communication structure which is derived directly from the structure of the value function.
LSPI has been successfuly combined with such methods; in empirical experiments, the
number of state visits required to achieve good performance scaled linearly with the number
of agents despite the exponential growth in the joint action space [4].

In this paper, we integrate these ideas and we present an algorithm for learning good strate-
gies for a team of agents that plays against an opponent team. In such games, players within
one team collaborate, whereas players in different teams compete. The key component of
this work is a method for computing efficiently the best strategy for a team, given an ap-
proximate factored value function which is a linear combination of features defined over
the state space and subsets of the joint action space for both sides. This method integrated
within LSPI yields a computationally efficient learning algorithm.

2 Markov Games

A two-player zero-sum Markov game is defined as a 6-tuple (S,A,O, P,R, γ), where:
S = {s1, s2, ..., sn} is a finite set of game states; A = {a1, a2, ..., am} and O =
{o1, o2, ..., ol} are finite sets of actions, one for each player; P is a Markovian state transi-
tion model — P (s, a, o, s′) is the probability that s′ will be the next state of the game when
the players take actions a and o respectively in state s; R is a reward (or cost) function
— R(s, a, o) is the expected one-step reward for taking actions a and o in state s; and,
γ ∈ (0, 1] is the discount factor for future rewards. We will refer to the first player as the
maximizer and the second player as the minimizer2. Note that if either player is permitted
only a single action, the Markov game becomes an MDP for the other player.

A policy π for a player in a Markov game is a mapping, π : S → Ω(A), which yields
probability distributions over the maximizer’s actions for each state in S. Unlike MDPs,
the optimal policy for a Markov game may be stochastic, i.e., it may define a mixed strategy
for every state. By convention, for any policy π, π(s) denotes the probability distribution
over actions in state s and π(s, a) denotes the probability of action a in state s.

The maximizer is interested in maximizing its expected, discounted return in the minimax
sense, that is, assuming the worst case of an optimal minimizer. Since the underlying
rewards are zero-sum, it is sufficient to view the minimizer as acting to minimize the maxi-
mizer’s return. For any policy π, we can define Qπ(s, a, o) as the expected total discounted
reward of the maximizer when following policy π after the players take actions a and o for
the first step. The corresponding fixed point equation for Qπ is:

Qπ(s, a, o) = R(s, a, o) + γ
∑

s′∈S

P (s, a, o, s′) min
o′∈O

∑

a′∈A

Qπ(s′, a′, o′)π(s′, a′) .

Given any Q function, the maximizer can choose actions so as to maximize its value:

V (s) = max
π′(s)∈Ω(A)

min
o∈O

∑

a∈A

Q(s, a, o)π′(s, a) . (1)

We will refer to the policy π′ chosen by Eq. (1) as the minimax policy with respect to Q.

2Because of the duality, we adopt the maximizer’s point of view for presentation.

This policy can be determined in any state s by solving the following linear program:

Maximize: V (s)
Subject to: ∀a ∈ A, π

′(s, a) ≥ 0�
a∈A

π
′(s, a) = 1

∀o ∈ O, V (s) ≤
�
a∈A

Q(s, a, o)π′(s, a) .

If Q = Qπ, the minimax policy is an improved policy compared to π. A policy iteration
algorithm can be implemented for Markov games in a manner analogous to policy iteration
for MDPs by fixing a policy πi, solving for Qπi , choosing πi+1 as the minimax policy with
respect to Qπi and iterating. This algorithm converges to the optimal minimax policy π∗.

3 Least Squares Policy Iteration (LSPI) for Markov Games

In practice, the state/action space is too large for an explicit representation of the Q func-
tion. We consider the standard approach of approximating the Q function as the linear
combination of k basis functions φj with weights wj , that is Q̂(s, a, o) = φ(s, a, o)ᵀw.
With this representation, the minimax policy π for the maximizer is determined by

π(s) = argmax
π(s) ∈Ω(A)

min
o∈O

∑

a∈A

π(s, a)φ(s, a, o)ᵀw ,

and can be computed by solving the following linear program

Maximize: V (s)
Subject to: ∀ a ∈ A, π(s, a) ≥ 0�

a∈A

π(s, a) = 1

∀ o ∈ O, V (s) ≤
�
a∈A

π(s, a)φ(s, a, o) � w .

We chose the LSPI algorithm to learn the weights w of the approximate value function.
Least-Squares Policy Iteration (LSPI) [5] is an approximate policy iteration algorithm that
learns policies using a corpus of stored samples. LSPI applies also with minor modifi-
cations to Markov games [6]. In particular, at each iteration, LSPI evaluates the current
policy using the stored samples and keeps the learned weights to represent implicitly the
improved minimax policy for the next iteration by solving the linear program above. The
modified update equations account for the minimizer’s action and the distribution over next
maximizer actions since the minimax policy is, in general, stochastic. More specifically, at
each iteration LSPI maintains two matrices, Â and b̂, which are updated as follows:�

A←
�
A + φ(s, a, o) � φ(s, a, o)− γ

�
a′∈A

π(s′, a′)φ(s′, a′
, o

′) � � ,
�
b←

�
b + φ(s, a, o)r ,

for any sample (s, a, o, r, s′). The policy π′(s′) for state s′ is computed using the linear
program above. The action o′ is the minimizing opponent action in computing π(s′) and
can be identified by the tight constraint on V (s′). The weight vector w is computed at
the end of each iteration as the solution to Âw = b̂. The key step in generalizing LSPI
to team Markov games is finding efficient means to perform these operations despite the
exponentially large joint action space.

4 Least Squares Policy Iteration for Team Markov Games

A team Markov game is a Markov game where a team of N maximizers is playing against
a team of M minimizers. Maximizer i chooses actions from Ai, so the team chooses

actions ā = (a1, a2, ..., aN) from Ā = A1 ×A2 × ... × AN , where ai ∈ Ai. Minimizer
i chooses actions from Oi, so the minimizer team chooses actions ō = (o1, o2, ..., oM)
from Ō = O1 × O2 × ... × OM , where oi ∈ Oi. Consider now an approximate value
function Q̂(s, ā, ō). The minimax policy π for the maximizer team in any given state s can
be computed (naively) by solving the following linear program:

Maximize: V (s)
Subject to: ∀ ā ∈ Ā, π(s, ā) ≥ 0�

ā∈Ā

π(s, ā) = 1

∀ ō ∈ Ō, V (s) ≤
�
ā∈Ā

π(s, ā)
�
Q(s, ā, ō) .

Since |Ā| is exponential in N and |Ō| is exponential in M , the linear program above
has an exponential number of variables and constraints and would be intractable to solve,
unless we make certain assumptions about Q̂. We assume a factored approximation [2] of
the Q function, given as a linear combination of k localized basis functions. Each basis
function can be thought of as an individual player’s perception of the environment, so
each φj need not depend upon every feature of the state or the actions taken by every
player in the game. In particular, we assume that each φj depends only on the actions of
a small subset of maximizers Aj and minimizers Oj , that is, φj = φj(s, āj , ōj), where
āj ∈ Āj and ōj ∈ Ōj (Āj is the joint action space of the palyers in Aj and Ōj is the
joint action space of the palyers in Oj). For example, if φ4 depends only on the actions of
maximizers {4, 5, 8}, and the actions of minimizers {3, 2, 7}, then ā4 ∈ A4 × A5 × A8

and ō4 ∈ O3 ×O2 ×O7. Under this locality assumption, the approximate (factored) value
function is

Q̂(s, ā, ō) =

k∑

j=1

φj(s, āj , ōj)wj ,

where the assignments to the āj’s and ōj ’s are consistent with ā and ō. Given this form
of the value function the linear program can be simplified significantly. We look at the
constraints for the value of the state first:

V (s) ≤
�
ā∈Ā

π(s, ā)

k�
j=1

φj(s, āj , ōj)wj

V (s) ≤

k�
j=1

�
ā∈Ā

π(s, ā)φj(s, āj , ōj)wj

V (s) ≤

k�
j=1

�
āj∈Āj

�
ā′∈Ā\Āj

π(s, ā)φj(s, āj , ōj)wj

V (s) ≤

k�
j=1

wj

�
āj∈Āj

φj(s, āj , ōj)
�

ā′∈Ā\Āj

π(s, ā)

V (s) ≤

k�
j=1

wj

�
āj∈Āj

φj(s, āj , ōj)πj(s, āj) ,

where each πj(s, āj) defines a probability distribution over the actions of the players that
appear in φj . From the last expression, it is clear that we can use πj(s, āj) as the variables
of the linear program. The number of these variables will typically be much smaller than
the number of variables π(s, ā), depending on the size of the Aj ’s. However, we must
add constraints to ensure that the local probability distributions πj(s) are consistent with a
global distribution over the entire joint action space Ā. The first set of constraints are the

standard ones for any probability distribution:

∀ j = 1, ..., k :
∑

āj∈Āj

πj(s, āj) = 1

∀ j = 1, ..., k : ∀ āj ∈ Āj , πj(s, āj) ≥ 0 .

For consistency, we must ensure that all marginals over common variables are identical:

∀ 1 ≤ j < h ≤ k : ∀ ā′ ∈ Āj ∩ Āh,
∑

ā′

j
∈Āj\Āh

πj(s, āj) =
∑

ā′

h
∈Āh\Āj

πh(s, āh) .

These constraints are sufficient if the running intersection property is satisfied by the
πj(s)’s [3]. If not, it is possible that the resulting πj(s)’s will not be consistent with any
global distribution even though they are locally consistent. However, the running intersec-
tion property can be enforced by introducing certain additional local distributions in the set
of πj(s)’s. This can be achieved using a variable elimination procedure.

First, we establish an elimination order for the maximizers and we let H1 be the set of all
πj(s)’s and L = ∅. At each step i, some agent i is eliminated and we let Ei be the set of all
distributions in Hi that involve the actions of agent i or have empty domain. We then create
a new distribution ωi over the actions of all agents that appear in Ei and we place ωi in L.
We then create ω′

i defined as the distribution over the actions of all agents that appear in ωi

except agent i. Next, we update Hi+1 = Hi ∪ {ω′
i} − Ei and repeat until all agents have

been eliminated. Note that HN will necessarily be empty and L will contain at most N
new local probability distributions. We can manipulate the elimination order in an attempt
to keep the distributions in L small (local), however their size will be exponential in the
induced tree width. As with Bayes nets, the existence and hardness of discovering efficient
elimination orderings will depend upon the topology. The set H1 ∪ L of local probability
distributions satisfies the running intersection property and so we can proceed with this set
instead of the original set of πj(s)’s and apply the constraints listed above. Even though we
are only interested in the πj(s)’s, the existence of the additional distributions in the linear
program will ensure that the πj(s)’s will be globally consistent.

The number of constraints needed for the local probability distributions is much smaller
than the original number of constraints. In summary, the new linear program will be:

Maximize: V (s)
Subject to: ∀ j = 1, ..., k : ∀ āj ∈ Āj , πj(s, āj) ≥ 0

∀ j = 1, ..., k :
�

āj∈Āj

πj(s, āj) = 1

∀ 1 ≤ j < h ≤ k : ∀ ā
′
∈ Āj ∩ Āh,

�
ā′

j
∈Āj\Āh

πj(s, āj) =
�

ā′

h
∈Āh\Āj

πh(s, āh)

∀ ō ∈ Ō, V (s) ≤
k�

j=1

wj

�
āj∈Āj

φj(s, āj , ōj)πj(s, āj) .

At this point we have eliminated the exponential dependency from the number of vari-
ables and partially from the number of constraints. The last set of (exponentially many)
constraints can be replaced by a single non-linear constraint:

V (s) ≤ min
ō∈Ō

k�
j=1

wj

�
āj∈Āj

φj(s, āj , ōj)πj(s, āj) .

We now show how this non-linear constraint can be turned into a number of linear con-
straints which is not exponential in M in general. The main idea is to embed a cost network
inside the linear program [2]. In particular, we define an elimination order for the oi’s in ō

and, for each oi in turn, we push the min operator for just oi as far inside the summation
as possible, keeping only terms that have some dependency on oi or no dependency on
any of the opponent team actions. We replace this smaller min expression over oi with a
new function fi (represent by a set of new variables in the linear program) that depends
on the other opponent actions that appear in this min expression. Finally, we introduce a
set of linear constraints for the value of fi that express the fact that fi is the minimum of
the eliminated expression in all cases. We repeat this elimination process until all oi’s and
therefore all min operators are eliminated.

More formally, at step i of the elimination, let Bi be the set of basis functions that have not
been eliminated up to that point and Fi be the set of the new functions that have not been
eliminated yet. For simplicity, we assume that the elimination order is o1, o2, ..., oM (in
practice the elimination order needs to be chosen carefully in advance since a poor elimi-
nation ordering could have serious adverse effects on efficiency). At the very beginning of
the elimination process, B1 = {φ1, φ2, ..., φk} and F1 is empty. When eliminating oi at
step i, define Ei ⊆ Bi ∪ Fi to be those functions that contain oi in their domain or have no
dependency on any opponent action. We generate a new function fi(¯̄oi) that depends on all
the opponent actions that appear in Ei excluding oi:

fi(¯̄oi) = min
oi∈Oi

�� � �
φj∈Ei

wj

�
āj∈Āj

φj(s, āj , ōj)πj(s, āj) +
�

fk∈Ei

fk(¯̄ok) � �� .

We introduce a new variable in the linear program for each possible setting of the domain
¯̄oi of the new function fi(¯̄oi). We also introduce a set of constraints for these variables:

∀ oi ∈ Oi, ∀ ¯̄oi : fi(¯̄oi) ≤
∑

φj∈Ei

wj

∑

āj∈Āj

φj(s, āj , ōj)πj(s, āj) +
∑

fk∈Ei

fk(¯̄ok)

These constraints ensure that the new function is the minimum over the possible choices
for oi. Now, we define Bi+1 = Bi − Ei and Fi+1 = Fi − Ei + {fi} and we continue with
the elimination of action oi+1. Notice that oi does not appear anywhere in Bi+1 or Fi+1.
Notice also that fM will necessarily have an empty domain and it is exactly the value of
the state, fM = V (s). Summarizing everything, the reduced linear program is

Maximize: fM

Subject to: ∀ j = 1, ..., k : ∀ āj ∈ Āj , πj(s, āj) ≥ 0

∀ j = 1, ..., k :
�

āj∈Āj

πj(s, āj) = 1

∀ 1 ≤ j < h ≤ k : ∀ ā
′
∈ Āj ∩ Āh,

�
ā′

j
∈Āj\Āh

πj(s, āj) =
�

ā′

h
∈Āh\Āj

πh(s, āh)

∀ i, ∀ oi, ∀ ¯̄oi : fi(¯̄oi) ≤
�

φj∈Ei

wj

�
āj∈Āj

φj(s, āj , ōj)πj(s, āj) +
�

fk∈Ei

fk(¯̄ok)

Notice that the exponential dependency in N and M has been eliminated. The total num-
ber of variables and/or constraints is now exponentially dependent only on the number
of players that appear together as a group in any of the basis functions or the intermedi-
ate functions and distributions. It should be emphasized that this reduced linear program
solves the same problem as the naive linear program and yields the same solution (albeit in
a factored form).

To complete the learning algorithm, the update equations of LSPI must also be modified.
For any sample (s, ā, ō, r, s′), the naive form would be�

A←
�
A + φ(s, ā, ō) � φ(s, ā, ō)− γ

�
ā′∈Ā

π(s′, ā′)φ(s′, ā′
, ō

′) � � ,
�
b←

�
b + φ(s, ā, ō)r .

The action ō′ is the minimizing opponent’s action in computing π(s′). Unfortunately,
the number of terms in the summation within the first update equation is exponential in

N . However, the vector φ(s, ā, ō) − γ
∑

ā′∈Ā π(s′, ā′)φ(s′, ā′, ō′) can be computed on a
component-by-component basis avoiding this exponential blowup. In particular, the j-th
component is:

φj(s, āj , ō)− γ
�

ā′∈Ā

π(s′, ā′)φj(s
′
, ā

′
j , ō

′)

= φj(s, ā, ō)− γ
�

ā′

j
∈Āj

�
ā′′

j
∈Ā\Āj

π(s′, ā′)φj(s
′
, ā

′
j , ō

′)

= φj(s, ā, ō)− γ
�

ā′

j
∈Āj

φj(s
′
, ā

′
j , ō

′)
�

ā′′

j
∈Ā\Āj

π(s′, ā′)

= φj(s, ā, ō)− γ
�

ā′

j
∈Āj

φj(s
′
, ā

′
j , ō

′)πj(s
′
, ā

′
j) ,

which can be easily computed without exponential enumeration.

A related question is how to find ō′, the minimizing opponent’s joint action in computing
π(s′). This can be done after the linear program is solved by going through the fi’s in
reverse order (compared to the elimination order) and finding the choice for oi that imposes
a tight constraint on fi(¯̄oi) conditioned on the minimizing choice for ¯̄oi that has been found
so far. The only complication is that the linear program has no incentive to maximize fi(¯̄oi)
unless it contributes to maximizing the final value. Thus, a constraint that appears to be
tight may not correspond to the actual minimizing choice. The solution to this is to do
a forward pass first (according to the elimination order) marking the fi(¯̄oi)’s that really
come from tight constraints. Then, the backward pass described above will find the true
minimizing choices by using only the marked fi(¯̄oi)’s.

The last question is how to sample an action ā from the global distribution defined by
the smaller distributions. We begin with all actions uninstantiated and we go through all
πj(s)’s. For each j, we marginalize out the instantiated actions (if any) from πj(s) to
generate the conditional probability and then we sample jointly the actions that remain in
the distribution. We repeat with the next j until all actions are instantiated. Notice that this
operation can be performed in a distributed manner, that is, at execution time only agents
whose actions appear in the same πj(s) need to communicate to sample actions jointly.
This communication structure is directly derived from the structure of the basis functions.

5 An Example

The algorithm has been implemented and is currently being tested on a large flow control
problem with multiple routers and servers. Since experimental results are still in progress,
we demonstrate the efficiency gained over exponential enumeration with an example. Con-
sider a problem with N = 5 maximizers and M = 4 minimizers. Assume also that each
maximizer or minimizer has 5 actions to choose from. The naive solution would require
solving a linear program with 3126 variables and 3751 constraints for any representation
of the value function. Consider now the following factored value function:

Q̂(s, ā, ō) = φ1(s, a1, a2, o1, o2)w1 + φ2(s, a1, a3, o1, o3)w2 +

φ3(s, a2, a4, o3)w3 + φ4(s, a3, a5, o4)w4 + φ5(s, a1, o3, o4)w5 .

These basis functions satisfy the running intersection property (there is no cycle of length
longer than 3), so there is no need for additional probability distributions. Using the elimi-
nation order {o4, o3, o1, o2} for the cost network, the reduced linear program contains only
121 variables and 215 constraints (we present only the 80 constraints on the value of the
state that demonstrate the variable elimination procedure, omitting the common constrains
for validity and consistency of the local probability distributions):

Maximize: f2 Subject to:

∀ o4 ∈ O4, ∀ o3 ∈ O3, f4(o3) ≤
�

(a3,a5)∈A3×A5

w4φ4(s, a3, a5, o4)π4(s, a3, a5) +

�
a1∈A1

w5φ5(s, a1, o3, o4)π5(s, a1)

∀ o3 ∈ O3, ∀ o1 ∈ O1, f3(o1) ≤
�

(a1,a3)∈A1×A3

w2φ2(s, a1, a3, o1, o3)π2(s, a1, a3) +

�
(a2,a4)∈A2×A4

w3φ3(s, a2, a4, o3)π3(s, a2, a4) + f4(o3)

∀ o1 ∈ O1, ∀ o2 ∈ O2, f1(o2) ≤
�

(a1,a2)∈A1×A2

w1φ1(s, a1, a2, o1, o2)π1(s, a1, a2) + f3(o1)

∀ o2 ∈ O2, f2 ≤ f1(o2)

6 Conclusion

We have presented a principled approach to the problem of solving large team Markov
games that builds on recent advances in value function approximation for Markov games
and multiagent coordination in reinforcement learning for MDPs. Our approach permits
a tradeoff between simple architectures with limited representational capability and sparse
communication and complex architectures with rich representations and more complex co-
ordination structure. It is our belief that the algorithm presented in this paper can be used
successfully in real-world, large-scale domains where the available knowledge about the
underlying structure can be exploited to derive powerful and sufficient factored representa-
tions.

Acknowledgments

This work was supported by NSF grant 0209088. We would also like to thank Carlos Guestrin for
helpful discussions.

References
[1] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113(1–2):41–85, 1999.

[2] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored MDPs. In
Proceeding of the 14th Neural Information Processing Systems (NIPS-14), pages 1523–1530,
Vancouver, Canada, December 2001.

[3] Carlos Guestrin, Daphne Koller, and Ronald Parr. Solving factored POMDPs with linear value
functions. In IJCAI-01 workshop on Planning under Uncertainty and Incomplete Information,
2001.

[4] Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. Coordinated reinforcement learning.
In Proceedings of the 19th International Conference on Machine Learning (ICML-02), pages
227–234, Sydney, Australia, July 2002.

[5] Michail Lagoudakis and Ronald Parr. Model free least squares policy iteration. In Proceedings
of the 14th Neural Information Processing Systems (NIPS-14), pages 1547–1554, Vancouver,
Canada, December 2001.

[6] Michail Lagoudakis and Ronald Parr. Value function approximation in zero sum Markov games.
In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI 2002), pages
283–292, Edmonton, Canada, 2002.

[7] Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the 11th International Conference on Machine Learning (ICML-94), pages 157–
163, San Francisco, CA, 1994. Morgan Kaufmann.

