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Abstract

Several authors have suggested viewing boosting as a gradient descent search for
a good fit in function space. We apply gradient-based boosting methodology to
the unsupervised learning problem of density estimation. We show convergence
properties of the algorithm and prove that a strength of weak learnability prop-
erty applies to this problem as well. We illustrate the potential of this approach
through experiments with boosting Bayesian networks to learn density models.

1 Introduction

Boosting is a method for incrementally building linear combinations of “weak” models,
to generate a “strong” predictive model. Given data
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, a basis (or dictionary) of

weak learners � and a loss function 
 , a boosting algorithm sequentially finds models� 
�� ��� ���	����� � and constants � 
�� � � �����	����� to minimize � � 
�� ����� � �!� � � � � ���#"$" . Ad-
aBoost [6], the original boosting algorithm, was specifically devised for the task of classi-
fication, where
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and 
 & 
�� +2��� � �3� � � � �4( �#"$" . AdaBoost
sequentially fits weak learners on re-weighted versions of the data, where the weights are
determined according to the performance of the model so far, emphasizing the more “chal-
lenging” examples. Its inventors attribute its success to the “boosting” effect which the
linear combination of weak learners achieves, when compared to their individual perfor-
mance. This effect manifests itself both in training data performance, where the boosted
model can be shown to converge, under mild conditions, to ideal training classification, and
in generalization error, where the success of boosting has been attributed to its “separating”
— or margin maximizing — properties [18].

It has been shown [8, 13] that AdaBoost can be described as a gradient descent algorithm,
where the weights in each step of the algorithm correspond to the gradient of an exponential
loss function at the “current” fit. In a recent paper, [17] show that the margin maximizing
properties of AdaBoost can be derived in this framework as well. This view of boosting
as gradient descent has allowed several authors [7, 13, 21] to suggest “gradient boosting
machines” which apply to a wider class of supervised learning problems and loss functions
than the original AdaBoost. Their results have been very promising.

In this paper we apply gradient boosting methodology to the unsupervised learning problem
of density estimation, using the negative log likelihood loss criterion 
5� ��� � �!� � � � � �6"$"7&/98	:,; � � �!� � � � � �6"$" . The density estimation problem has been studied extensively in many
contexts using various parametric and non-parametric approaches [2, 5]. A particular



framework which has recently gained much popularity is that of Bayesian networks [11],
whose main strength stems from their graphical representation, allowing for highly inter-
pretable models. More recently, researchers have developed methods for learning Bayesian
networks from data including learning in the context of incomplete data. We use Bayesian
networks as our choice of weak learners, combining the models using the boosting method-
ology. We note that several researchers have considered learning weighted mixtures of
networks [14], or ensembles of Bayesian networks combined by model averaging [9, 20].

We describe a generic density estimation boosting algorithm, following the approach of
[13]. The main idea is to identify, at each boosting iteration, the basis function

� � �
which gives the largest “local” improvement in the loss at the current fit. Intuitively,

�
assigns higher probability to instances that received low probability by the current model. A
line search is then used to find an appropriate coefficient for the newly selected

�
function,

and it is added to the current model.

We provide a theoretical analysis of our density estimation boosting algorithm, showing an
explicit condition, which if satisfied, guarantees that adding a weak learner to the model im-
proves the training set loss. We also prove a “strength of weak learnability” theorem which
gives lower bounds on overall training loss improvement as a function of the individual
weak learners’ performance on re-weighted versions of the training data.

We describe the instantiation of our generic boosting algorithm for the case of using
Bayesian networks as our basis of weak learners � and provide experimental results on
two distinct data sets, showing that our algorithm achieves higher generalization on unseen
data as compared to a single Bayesian network and one particular ensemble of Bayesian
networks. We also show that our theoretical criterion for a weak learner to improve the
overall model applies well in practice.

2 A density estimation boosting algorithm

At each step � in a boosting algorithm, the model built so far is: ����� 
 � � " & � ��� � � � � � � � " .
If we now choose a weak learner

� � � and add it to our model with a small coefficient� , then developing the training loss of the new model 	 & � ��� 
�
 � � in a Taylor series
around the loss at ����� 
 gives
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which in the case of negative log-likelihood loss can be written as
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Since � is small, we can ignore the second order term and choose the next boosting step� � to maximize � �


�������! #"%$'& � � ��� " . We are thus finding the first order optimal weak learner,
which gives the “steepest descent” in the loss at the current model predictions. However,
we should note that once � becomes non-infinitesimal, no “optimality” property can be
claimed for this selected

� � .
The main idea of gradient-based generic boosting algorithms, such as AnyBoost [13] and
GradientBoost [7], is to utilize this first order approach to find, at each step, the weak
learner which gives good improvement in the loss and then follow the “direction” of this
weak learner to augment the current model. The step size � � is determined in various ways
in the different algorithms, the most popular choice being line-search, which we adopt here.

When we consider applying this methodology to density estimation, where the basis � is
comprised of probability distributions and the overall model ��� is a probability distribution



as well, we cannot simply augment the model, since ����� 
 
 ��� � � will no longer be a
probability distribution. Rather, we consider a step of the form � � & � 0 / ��� " ����� 
 
 ��� � � ,
where

��� � � � 0 . It is easy to see that the first order theory of gradient boosting and the
line search solution apply to this formulation as well.

If at some stage � , the current � ��� 
 cannot be improved by adding any of the weak learners
as above, the algorithm terminates, and we have reached a global minimum. This can only
happen if the derivative of the loss at the current model with respect to the coefficient of
each weak learner is non-negative:

� � � � � � �
� /98	:,; �*� 0�/ � " ����� 
 � ���-" 
 � � � ���#"$"

� �
� �,��� &
	 / 


�
0

� ��� 
 � �
���-"�� � �

Thus, the algorithm terminates if no
� � � gives � �


� �'��� � � � � "�
�	
(see section 3 for

proof and discussion).

The resulting generic gradient boosting algorithm for density estimation can be seen in
Fig. 1. Implementation details for this algorithm include the choice of the family of weak
learners � , and the method for searching for

� � at each boosting iteration. We address
these details in Section 4.

1. Set ��������� to uniform on the domain of �
2. For t = 1 to T

(a) Set �������! "��#%$�&!���!�'�
(b) Find ( #*),+ to maximize - � � � ( # ��� � �
(c) If - � � � ( # ��� � �/.10 break.
(d) Find 2�#3�54!687:9<;>=@? - �BADC>E 7F�G�H� A 23�H��#%$I&!���"�'�KJL2�(M#N���!�'�G�
(e) Set ��#����H� A 2�#H�H��#%$I&�JO2�#P(M#

3. Output the final model ��Q
Figure 1: Boosting density estimation algorithm

3 Training data performance

The concept of “strength of weak learnability” [6, 18] has been developed in the context
of boosting classification models. Conceptually, this property can be described as follows:
“if for any weighting of the training data

�SR��$� ���� 

, there is a weak learner

� � � which
achieves weighted training error slightly better than random guessing on the re-weighted
version of the data using these weights, then the combined boosted learner will have van-
ishing error on the training data”.

In classification, this concept is realized elegantly. At each step in the algorithm, the
weighted error of the previous model, using the new weights is exactly

� �UT
. Thus, the new

weak learner doing “better than random” on the re-weighted data means it can improve the
previous weak learner’s performance at the current fit, by achieving weighted classification
error better than

� � T
. In fact it is easy to show that the weak learnability condition of at

least one weak learner attaining classification error less than
� � T

on the re-weighted data
does not hold only if the current combined model is the optimal solution in the space of
linear combinations of weak learners.

We now derive a similar formulation for our density estimation boosting algorithm. We
start with a quantitative description of the performance of the previous weak learner

� ��� 

at the combined model � ��� 
 , given in the following lemma:

Lemma 1 Using the algorithm of section 2 we get:
� � � � �*V �  #" $ &� �  #" $ & &W	

, where
	

is the
number of training examples.



Proof: The line search (step 2(c) in the algorithm) implies:
� & � �
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Lemma 1 allows us to derive the following stopping criterion (or optimality condition) for
the boosting algorithm, illustrating that in order to improve training set loss, the new weak
learner only has to exceed the previous one’s performance at the current fit.

Theorem 1 If there does not exist a weak learner
� � � such that � �


� �  #" $ & � � ��� " 
 	
,

then � � is the global minimum in the domain of normalized linear combinations of � :��� & ��� ;����	��
 � � /������ � � �
� � � � � � �#"$"��,� � � � � ��� 	�� � ��� � & 0
Proof: This is a direct result of the optimality conditions for a convex function (in this case/98	:,;

) in a compact domain.

So unless we have reached the global optimum in the simplex within
��� � 	 � � � (which will

generally happen quickly only if � is very small, i.e. the “weak” learners are very weak),
we will have some weak learners doing better than “random” and attaining � �DV  #" $ &� �  #" $ & 
 	

.
If this is indeed the case, we can derive an explicit lower bound for training set loss im-
provement as a function of the new weak learner’s performance at the current model:

Theorem 2 Assume:

1. The sequence of selected weak learners in the algorithm of section 2 has:� �

� �����  #" $ & � � � ���-" &
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2.
� ����� 	3� ������� 
 � ��� " � � � � ��� "$" � � �

Then we get:
/ � � 8�:2; ��� � � � � "*" � / � � 8�:2; ��� ��� 
 � � � "$" /�� ��"! ��� �

Proof:

� �
� / 8�:2; �$� 0�/ � " ����� 
 � ���#" 
 � � � � ���-"$"

� �
� �2���5& 	 / 


�
� � � ��� "� ��� 
 � � � "

& / � �
�
�
� � /98	:,; �*� 0�/ � " � ��� 
 � � � " 
 � � � � � � "$"

� �
� & 


�
# ����� 
 � ��� " / � � � ���-"%$ �# � 0�/ � " � ��� 
 � � � " 
 � � � � � � "&$ � �

	
� ��

Combining these two gives: ')( $ �+* ,�-  ' 
 � � &'� �'���  #" $ &/. � V �  #" $ &'&
'
� � � / � � 
 � �! �� , which implies:
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The second assumption of theorem 2 may not seem obvious but it is actually quite mild.
With a bit more notation we could get rid of the need to lower bound

� � completely. For� � , we can see intuitively that a boosting algorithm will not let any observation have ex-
ceptionally low probability over time since that would cause this observation to have over-
whelming weight in the next boosting iteration and hence the next selected

� � is certain to
give it high probability. Thus, after some iterations we can assume that we would actually
have a threshold � independent of the iteration number and hence the loss would decrease
at least as the sum of squares of the “weak learnability” quantities

� � .
4 Boosting Bayesian Networks

We now focus our attention on a specific application of the boosting methodology for den-
sity estimation, using Bayesian networks as the weak learners. A Bayesian network is a



graphical model for describing a joint distribution over a set of random variables. Recently,
there has been much work on developing algorithms for learning Bayesian networks (both
network structure and parameters) from data for the task of density estimation and hence
they seem appropriate as our choice of weak learners. Another advantage of Bayesian net-
works in our context, is the ability to tune the strength of the weak learners using parameters
such as number of edges and strength of prior.

Assume we have categorical data
� � � � ���� 


in a domain � where each of the
	

observations
contains assignments to � variables. We rewrite step 2(b) of the boosting algorithm as:� ��� " Find

� � � � to maximize � "����
	 " � � �6" , where 	 " & � " $ � " R��
In this formulation, all possible values of

�
have weights, some of which may be

�
.

As mentioned above, the two main implementation-specific details in the generic density
estimation algorithm are the set � of weak models and the method for searching for the
”optimal” weak model

� � at each boosting iteration. When boosting Bayesian networks,
a natural way of limiting the “strength” of weak learners in � is to limit the complexity
of the network structure in � . This can be done, for instance, by bounding the number of
edges in each “weak density estimator” learned during the boosting iterations.

The problem of finding an “optimal” weak model at each boosting iteration (step 2(b) of
the algorithm) is trickier. We first note that if we only impose an 
 
 constraint on the norm
of
� � (specifically, the PDF constraint � " � � �6"�& 0 ), then step 2(b) has a trivial solution,

concentrating all the probability at the value of
�

with the highest “weight”:
��� � �6" & 02� � &��� ;�� ��
�� ��� 	 � � . This phenomenon is not limited to the density estimation case and would

appear in boosting for classification if the set of weak learners � had fixed 
 
 norm, rather
than the fixed 
�� norm, implicitly imposed by limiting � to contain classifiers. This
consequence of limiting � to contain probability distributions is particularly problematic
when boosting Bayesian networks, since

� �
can be represented with a fully disconnected

network. Thus, limiting � to “simple” structures by itself does not amend this problem.

However, the boosting algorithm does not explicitly require � to include only probability
distributions. Let us consider instead a somewhat different family of candidate models,
with an implicit 
 � size constraint, rather than 
 
 as in the case of probability distributions
(note that using an 
�� constraint as in Adaboost is not possible, since the trivial optimal
solution would be

� ��� 0
). For the unconstrained “distribution” case (corresponding to a

fully connected Bayesian network), this leads to re-writing step 2(b) of the boosting algo-
rithm as:� ��� "



Find

�
to maximize � "�����	 " � � �6" , subject to � "���� � � �6" � & 0

By considering the Lagrange multiplier version of this problem it is easy to see that the
optimal solution is

���� � � �6" & ����
(�� �"! � �� and is proportional to the optimal solution to the

log-likelihood maximization problem:� ��� " � Find
�

to maximize � "�����	 " 8�:2; � � � �6"$" , subject to � "���� � � �6"7& 0
given by

���#%$'& � � "1& �(�
( � �"! � � . This fact points to an interesting correspondence between

solutions to 
 � -constrained linear optimization problems and 
 
 -constrained log optimiza-
tion problems and leads us to believe that good solutions to step

� �)� "



of the boosting
algorithm can be approximated by solving step

� ��� " � instead.

The formulation given in
� �)� " � presents us with a problem that is natural for Bayesian

network learning, that of maximizing the log-likelihood (or in this case the weighted log-
likelihood � "*	 " 8	:,; � � �6" ) of the data given the structure.

Our implementation of the boosting algorithm, therefore, does indeed limit � to in-
clude probability distributions only, in this case those that can be represented by “simple”
Bayesian networks. It solves a constrained version of step

� ��� " � instead of the original ver-
sion

� ��� " . Note that this use of “surrogate” optimization tasks is not alien to other boosting
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Figure 2: (a) Comparison of boosting, single Bayesian network and AutoClass performance on the
genomic expression dataset. The average log-likelihood for each test set instance is plotted. (b) Same
as (a) for the census dataset. Results for AutoClass were omitted as they were not competitive in this
domain (see text). (c) The weak learnability condition is plotted along with training data performance
for the genomic expression dataset. The plot is in log-scale and also includes C>E 7F��� � as a reference
where � is the number of training instances (d) Same as (c) for the census dataset.

applications as well. For example, Adaboost calls for optimizing a re-weighted classifica-
tion problem at each step; Decision trees, the most popular boosting weak learners, search
for “optimal” solutions using surrogate loss functions - such as the Gini index for CART
[3] or information gain for C4.5 [16].

5 Experimental Results

We evaluated the performance of our algorithms on two distinct datasets: a genomic ex-
pression dataset and a US census dataset. In gene expression data, the level of mRNA
transcript of every gene in the cell is measured simultaneously, using DNA microar-
ray technology, allowing researchers to detect functionally related genes based on the
correlation of their expression profiles across the various experiments. We combined
three yeast expression data sets [10, 12, 19] for a total of 550 expression experiments.
To test our methods on a set of correlated variables, we selected 56 genes associated
with the oxidative phosphorlylation pathway in the KEGG database [1]. We discretized
the expression measurements of each gene into three levels (down, same, up) as in
[15]. We obtained the 1990 US census data set from the UC Irvine data repository
(http://kdd.ics.uci.edu/databases/census1990/USCensus1990.html). The data set includes
68 discretized attributes such as age, income, occupation, work status, etc. We randomly
selected 5k entries from the 2.5M available entries in the entire data set.

Each of the data sets was randomly partitioned into 5 equally sized sets and our boosting
algorithm was learned from each of the 5 possible combinations of 4 partitions. The perfor-
mance of each boosting model was evaluated by measuring the log-likelihood achieved on



the data instances in the left out partition. We compared the performance achieved to that
of a single Bayesian network learned using standard techniques (see [11] and references
therein). To test whether our boosting approach gains its performance primarily by using
an ensemble of Bayesian networks, we also compared the performance to that achieved
by an ensemble of Bayesian networks learned using AutoClass [4], varying the number of
classes from 2 to 100. We report results for the setting of AutoClass achieving the best
performance. The results are reported as the average log-likelihood measured for each in-
stance in the test data and summarized in Fig. 2(a,b). We omit the results of AutoClass
for the census data as it was not comparable to boosting and a single Bayesian network,
achieving an average test instance log-likelihood of

/�� 02� ����� � � ���
. As can be seen, our

boosting algorithm performs significantly better, rendering each instance in the test data
roughly

�
and

� � �
times more likely than it is using other approaches in the genomic and

census datasets, respectively.

To illustrate the theoretical concepts discussed in Section 3, we recorded the performance
of our boosting algorithm on the training set for both data sets. As shown in Section 3,
if � �


� �  #" $ & � � ��� " 
 	
, then adding

�
to the model is guaranteed to improve our training

set performance. Theorem 2 relates the magnitude of this difference to the amount of
improvement in training set performance. Fig. 2(c,d) plots the weak learnability quantity� �


� �  #" $ & � � ���-" , the training set log-likelihood and the threshold
	

for both data sets on a
log scale. As can be seen, the theory matches nicely, as the improvement is large when the
weak learnability condition is large and stops entirely once it asymptotes to

	
.

Finally, boosting theory tells us that the effect of boosting is more pronounced for “weaker”
weak learners. To that extent, we experimented (data not shown) with various strength
parameters for the family of weak learners � (number of allowed edges in each Bayesian
network, strength of prior). As expected, the overall effect of boosting was much stronger
for weaker learners.

6 Discussion and future work

In this paper we extended the boosting methodology to the domain of density estimation
and demonstrated its practical performance on real world datasets. We believe that this di-
rection shows promise and hope that our work will lead to other boosting implementations
in density estimation as well as other function estimation domains.

Our theoretical results include an exposition of the training data performance of the generic
algorithm, proving analogous results to those in the case of boosting for classification. Of
particular interest is theorem 1, implying that the idealized algorithm converges, asymp-
totically, to the global minimum. This result is interesting, as it implies that the greedy
boosting algorithm converges to the exhaustive solution. However, this global minimum is
usually not a good solution in terms of test-set performance as it will tend to overfit (espe-
cially if � is not very small). Boosting can be described as generating a regularized path to
this optimal solution [17], and thus we can assume that points along the path will usually
have better generalization performance than the non-regularized optimum.

In Section 4 we described the theoretical and practical difficulties in solving the optimiza-
tion step of the boosting iterations (step 2(b)). We suggested replacing it with a more easily
solvable log-optimization problem, a replacement that can be partly justified by theoretical
arguments. However, it will be interesting to formulate other cases where the original prob-
lem has non-trivial solutions - for instance, by not limiting � to probability distributions
only and using non-density estimation algorithms to generate the “weak” models

� � .
The popularity of Bayesian networks as density estimators stems from their intuitive in-
terpretation as describing causal relations in data. However, when learning the network



structure from data, a major issue is assigning confidence to the learned features. A po-
tential use of boosting could be in improving interpretability and reducing instability in
structure learning. If the weak models in � are limited to a small number of edges, we can
collect and interpret the “total influence” of edges in the combined model. This seems like
a promising avenue for future research, which we intend to pursue.
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