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Abstract

Address-event representation (AER), originally proposed as a means
to communicate sparse neural events between neuromorphic chips, has
proven efficient in implementing large-scale networks with arbitrary,
configurable synaptic connectivity. In this work, we further extend the
functionality of AER to implement arbitrary, configurable synaptic plas-
ticity in the address domain. As proof of concept, we implement a bi-
ologically inspired form of spike timing-dependent plasticity (STDP)
based on relative timing of events in an AER framework. Experimen-
tal results from an analog VLSI integrate-and-fire network demonstrate
address domain learning in a task that requires neurons to group corre-
lated inputs.

1 Introduction

It has been suggested that the brain’s impressive functionality results from massively par-
allel processing using simple and efficient computational elements [1]. Developments in
neuromorphic engineering and address-event representation (AER) have provided an in-
frastructure suitable for emulating large-scale neural systems in silicon, e.g., [2, 3]. Al-
though an integral part of neuromorphic engineering since its inception [1], only recently
have implemented systems begun to incorporate adaptation and learning with biological
models of synaptic plasticity.

A variety of learning rules have been realized in neuromorphic hardware [4, 5]. These sys-
tems usually employ circuitry incorporated into the individual cells, imposing constraints
on the nature of inputs and outputs of the implemented algorithm. While well-suited to
small assemblies of neurons, these architectures are not easily scalable to networks of hun-
dreds or thousands of neurons. Algorithms based both on continuous-valued “intracellular”
signals and discrete spiking events have been realized in this way, and while analog com-
putations may be performed better at the cellular level, we argue that it is advantageous
to implement spike-based learning rules in the address domain. AER-based systems are
inherently scalable, and because the encoding and decoding of events is performed at the
periphery, learning algorithms can be arbitrarily complex without increasing the size of
repeating neural units. Furthermore, AER makes no assumptions about the signals repre-
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Figure 1: Address-event representation. Sender events are encoded into an address, sent
over the bus, and decoded. Handshaking signals REQ and ACK are required to ensure that
only one cell pair is communicating at a time. Note that the time axis goes from right to
left.

sented as spikes, so learning can address any measure of cellular activity. This flexibility
can be exploited to achieve learning mechanisms with high degrees of biological realism.

Much previous work has focused on rate-based Hebbian learning (e.g., [6]), but recently,
the possibility of modifying synapses based on the timing of action potentials has been
explored in both the neuroscience [7, 8] and neuromorphic engineering disciplines [9]–[11].
This latter hypothesis gives rise to the possibility of learning based on causality, as opposed
to mere correlation. We propose that AER-based neuromorphic systems are ideally suited
to implement learning rules founded on this notion of spike-timing dependent plasticity
(STDP). In the following sections, we describe an implementation of one biologically-
plausible STDP learning rule and demonstrate that table-based synaptic connectivity can be
extended to table-based synaptic plasticity in a scalable and reconfigurable neuromorphic
AER architecture.

2 Address-domain architecture

Address-event representation is a communication protocol that uses time-multiplexing to
emulate extensive connectivity [12] (Fig. 1). In an AER system, one array of neurons en-
codes its activity in the form of spikes that are transmitted to another array of neurons. The
“brute force” approach to communicating these signals would be to use one wire for each
pair of neurons, requiring N wires for N cell pairs. However, an AER system identifies
the location of a spiking cell and encodes this as an address, which is then sent across a
shared data bus. The receiving array decodes the address and routes it to the appropriate
cell, reconstructing the sender’s activity. Handshaking signals REQ and ACK are required
to ensure that only one cell pair is using the data bus at a time. This scheme reduces the re-
quired number of wires from N to ∼ log2N . Two pieces of information uniquely identify
a spike: its location, which is explicitly encoded as an address, and the time that it occurs,
which need not be explicitly encoded because the events are communicated in real-time.
The encoded spike is called an address-event.

In its original formulation, AER implements a one-to-one connection topology, which is
appropriate for emulating the optic and auditory nerves [12, 13]. To create more complex
neural circuits, convergent and divergent connectivity is required. Several authors have
discussed and implemented methods of enhancing the connectivity of AER systems to
this end [14]–[16]. These methods call for a memory-based projective field mapping that
enables routing an address-event to multiple receiver locations.

The enhanced AER system employed in this paper is based on that of [17], which en-
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Figure 2: Enhanced AER for implementing complex neural networks. (a) Example neural
network. The connections are labeled with their weight values. (b) The network in (a) is
mapped to the AER framework by means of a look-up table.

ables continuous-valued synaptic weights by means of graded (probabilistic or determinis-
tic) transmission of address-events. This architecture employs a look-up table (LUT), an
integrate-and-fire address-event transceiver (IFAT), and some additional support circuitry.
Fig. 2 shows how an example two-layer network can be mapped to the AER framework.
Each row in the table corresponds to a single synaptic connection—it contains information
about the sender location, the receiver location, the connection polarity (excitatory or in-
hibitory), and the connection magnitude. When a spike is sent to the system, the sender
address is used as an index into the LUT and a signal activates the event generator (EG)
circuit. The EG scrolls through all the table entries corresponding to synaptic connections
from the sending neuron. For each synapse, the receiver address and the spike polarity
are sent to the IFAT, and the EG initiates as many spikes as are specified in the weight
magnitude field.

Events received by the IFAT are temporally and spatially integrated by analog circuitry.
Each integrate-and-fire cell receives excitatory and inhibitory inputs that increment or
decrement the potential stored on an internal capacitance. When this potential exceeds
a given threshold, the cell generates an output event and broadcasts its address to the AE
arbiter. The physical location of neurons in the array is inconsequential as connections are
routed through the LUT, which is implemented in random-access memory (RAM) outside
of the chip.

An interesting feature of the IFAT is that it is insensitive to the timescale over which events
occur. Because internal potentials are not subject to decay, the cells’ activities are only
sensitive to the order of the events. Effects of leakage current in real neurons are emulated
by regularly sending inhibitory events to all of the cells in the array. Modulating the timing
of the “global decay events” allows us to dynamically warp the time axis.

We have designed and implemented a prototype system that uses the IFAT infrastructure
to implement massively connected, reconfigurable neural networks. An example setup is
described in detail in [17], and is illustrated in Fig. 3. It consists of a custom VLSI IFAT
chip with a 1024-neuron array, a RAM that stores the look-up table, and a microcontroller
unit (MCU) that realizes the event generator.

As discussed in [18, p. 91], a synaptic weight w can be expressed as the combined effect
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Figure 3: Hardware implementation of enhanced AER. The elements are an integrate-and-
fire array transceiver (IFAT) chip, a random-access memory (RAM) look-up table, and a
microcontroller unit (MCU). (a) Feedforward mode. Input events are routed by the RAM
look-up table, and integrated by the IFAT chip. (b) Recurrent mode. Events emitted by the
IFAT are sent to the look-up table, where they are routed back to the IFAT. This makes
virtual connections between IFAT cells.

of three physical mechanisms:
w = npq (1)

where n is the number of quantal neurotransmitter sites, p is the probability of synaptic
release per site, and q is the measure of the postsynaptic effect of the synapse. Many early
neural network models held n and p constant and attributed all of the variability in the
weight to q. Our architecture is capable of varying all three components: n by sending
multiple events to the same receiver location, p by probabilistically routing the events (as
in [17]), and q by varying the size of the potential increments and decrements in the IFAT
cells. In the experiments described in this paper, the transmission of address-events is
deterministic, and the weight is controlled by varying the number of events per synapse,
corresponding to a variation in n.

3 Address-domain learning

The AER architecture lends itself to implementations of synaptic plasticity, since informa-
tion about presynaptic and postsynaptic activity is readily available and the contents of the
synaptic weight fields in RAM are easily modifiable “on the fly.” As in biological systems,
synapses can be dynamically created and pruned by inserting or deleting entries in the LUT.

Like address domain connectivity, the advantage of address domain plasticity is that the
constituents of the implemented learning rule are not constrained to be local in space or
time. Various forms of learning algorithms can be mapped onto the same architecture by
reconfiguring the MCU interfacing the IFAT and the LUT.

Basic forms of Hebbian learning can be implemented with no overhead in the address do-
main. When a presynaptic event, routed by the LUT through the IFAT, elicits a postsynaptic
event, the synaptic strength between the two neurons is simply updated by incrementing the
data field of the LUT entry at the active address location. A similar strategy can be adopted
for other learning rules of the incremental outer-product type, such as delta-rule or back-
propagation supervised learning.

Non-local learning rules require control of the LUT address space to implement spatial
and/or temporal dependencies. Most interesting from a biological perspective are forms of
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Figure 4: Spike timing-dependent plasticity (STDP) in the address domain. (a) Synaptic
updates ∆w as a function of the relative timing of presynaptic and postsynaptic events, with
asymmetric windows of anti-causal and causal regimes τ− > τ+. (b) Address-domain
implementation using presynaptic (top) and postsynaptic (bottom) event queues of window
lengths τ+ and τ−.

spike timing-dependent plasticity (STDP).

4 Spike timing-dependent plasticity

Learning rules based on STDP specify changes in synaptic strength depending on the time
interval between each pair of presynaptic and postsynaptic events. “Causal” postsynaptic
events that succeed presynaptic action potentials (APs) by a short duration of time poten-
tiate the synaptic strength, while “anti-causal” presynaptic events succeeding postsynaptic
APs by a short duration depress the synaptic strength. The amount of strengthening or
weakening is dependent on the exact time of the event within the causal or anti-causal
regime, as illustrated in Fig. 4 (a). The weight update has the form

∆w =

{ −η[τ− − (tpre − tpost)] 0 ≤ tpre − tpost ≤ τ−
η[τ+ + (tpre − tpost)] −τ+ ≤ tpre − tpost ≤ 0
0 otherwise

(2)

where tpre and tpost denote time stamps of presynaptic and postsynaptic events.

For stable learning, the time windows of causal and anti-causal regimes τ+ and τ− are
subject to the constraint τ+ < τ−. For more general functional forms of STDP ∆w(tpre −
tpost), the area under the synaptic modification curve in the anti-causal regime must be
greater than that in the causal regime to ensure convergence of the synaptic strengths [7].

The STDP synaptic modification rule (2) is implemented in the address domain by aug-
menting the AER architecture with two event queues, one each for presynaptic and post-
synaptic events, shown in Figure 4 (b). Each time a presynaptic event is generated, the
sender’s address is entered into a queue with an associated value of τ+. All values in the
queue are decremented every time a global decay event is observed, marking one unit of
time T . A postsynaptic event triggers a sequence of synaptic updates by iterating back-
wards through the queue to find the causal spikes, in turn locating the synaptic strength en-
tries in the LUT corresponding to the sender addresses and synaptic index, and increasing
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Figure 5: Pictorial representation of our experimental neural network, with actual spike
train data sent from the workstation to the first layer. All cells are identical, but x18 . . . x20

(shaded) receive correlated inputs. Activity becomes more sparse in the hidden and output
layers as the IFAT integrates spatiotemporally. Note that connections are virtual, specified
in the RAM look-up-table.

the synaptic strengths in the LUT according to the values stored in the queue. Anti-causal
events require an equivalent set of operations, matching each incoming presynaptic spike
with a second queue of postsynaptic events. In this case, entries in the queue are initialized
with a value of τ− and decremented after every interval of time T between decay events,
corresponding to the decrease in strength to be applied at the presynaptic/postsynaptic pair.

We have chosen a particularly simple form of the synaptic modification function (2) as
proof of principle in the experiments. More general functions can be implemented by a
table that maps time bins in the history of the queue to specified values of ∆w(nT ), with
positive values of n indexing the postsynaptic queue, and negative values indexing the
presynaptic queue.

5 Experimental results

We have implemented a Hebbian spike timing-based learning rule on a network of 21 neu-
rons using the IFAT system (Fig. 5). Each of the 20 neurons in the input layer is driven by
an externally supplied, randomly generated list of events. Sufficiently high levels of input
cause these neurons to produce spikes that subsequently drive the output layer. All events
are communicated over the address-event bus and are monitored by a workstation com-
municating with the MCU and RAM. As shown in [7], temporally asymmetric Hebbian
learning using STDP is useful for detecting correlations between inputs. We have proved
that this can be accomplished in hardware in the address domain by presenting the network
with stimulus patterns containing a set of correlated inputs and a set of uncorrelated inputs:
neurons x1 . . . x17 are all stimulated independently with a probability of 0.05 per unit of
time, while neurons x18 . . . x20 have the same likelihood of stimulation but are always ac-
tivated together. Thus, over a sufficiently long period of time each neuron in the input layer
will receive the same amount of activation, but the correlated group will fire synchronous
spikes more frequently than any other combination of neurons.

In the implemented learning rule (2), causal activity results in synaptic strengthening and
anti-causal activity results in synaptic weakening. As described in Section 4, for an anti-
causal regime τ− larger than the causal regime τ+, random activity results in overall weak-
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Figure 6: Experimental synaptic strengths in the second layer, recorded from the IFAT
system after the presentation of 200,000 input events. (a) Typical experimental run. (b)
Average (+SE) over 20 experimental runs.

ening of a synapse. All synapses connecting the input and output layers are equally likely
to be active during an anti-causal regime. However, the increase in average contribution
to the postsynaptic membrane potential for the correlated group of neurons renders this
population slightly more likely to be active during the causal regime than any single mem-
ber of the uncorrelated group. Therefore, the synaptic strengths for this group of neurons
will increase with respect to the uncorrelated group, further augmenting their likelihood
of causing a postsynaptic spike. Over time, this positive feedback results in a random but
stable distribution of synaptic strengths in which the correlated neurons’ synapses form
the strongest connections and the remaining neurons are distributed around an equilibrium
value for weak connections.

In the experiments, we have chosen τ+ = 3 and τ− = 6. An example of a typical dis-
tribution of synaptic strengths recorded after 200,000 events have been processed by the
input layer is shown in Fig. 6 (a). For the data shown, synapses driving the input layer were
fixed at the maximum strength (+31), the rate of decay was −4 per unit of time, and the
plastic synapses between the input and output layers were all initialized to +8. Because
the events sent from the workstation to the input layer are randomly generated, fluctuations
in the strengths of individual synapses occur consistently throughout the operation of the
system. Thus, the final distribution of synaptic weights is different each time, but a pattern
can be clearly discerned from the average value of synaptic weights after 20 separate trials
of 200,000 events each, as shown in Fig. 6 (b).

The system is robust to changes in various parameters of the spike timing-based learning
algorithm as well as to modifications in the number of correlated, uncorrelated, and total
neurons (data not shown). It also converges to a similar distribution regardless of the initial
values of the synaptic strengths (with the constraint that the net activity must be larger than
the rate of decay of the voltage stored on the membrane capacitance of the output neuron).

6 Conclusion

We have demonstrated that the address domain provides an efficient representation to im-
plement synaptic plasticity that depends on the relative timing of events. Unlike dedicated
hardware implementations of learning functions embedded into the connectivity, the ad-
dress domain implementation allows for learning rules with interactions that are not con-
strained in space and time. Experimental results verified this for temporally-antisymmetric
Hebbian learning, but the framework can be extended to general learning rules, including
reward-based schemes [10].



The IFAT architecture can be augmented to include sensory input, physical nearest-
neighbor connectivity between neurons, and more realistic biological models of neural
computation. Additionally, integrating the RAM and IFAT into a single chip will allow for
increased computational bandwidth. Unlike a purely digital implementation or software
emulation, the AER framework preserves the continuous nature of the timing of events.
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